C++ implementation of high-performance associative neural networks models based on pseudo-inverse learning rule, also known as projection rule or attractor-based rule

Features

  • This project is based on the work and PhD thesis of Dmitry O. Gorodnichy and Oleksiy K. Dekhtyarenko
  • Implementation of most known and efficient learning rules for associative Hopfield-like attractor-based neural network

Project Samples

Project Activity

See All Activity >

Follow PINNLib

PINNLib Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Ratings

★★★★★
★★★★
★★★
★★
1
0
0
0
0
ease 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 4 / 5
features 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
design 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 4 / 5
support 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 2 / 5

User Reviews

  • Very useful library and sample codes to understand and implement associative neural networks, can be used to implement many associative recognition tasks, such as face recognition. The only available free codes for this type of neural networks. Great for students and researchers!
Read more reviews >

Additional Project Details

Registered

2013-12-26