
The PDL Book

March 2013

for PDL 2.006

The PDL Book

Page 1

PDL Book - Table of Contents
PDL::Book::FirstSteps Trying out PDL for the first time.

PDL::Book::Piddle What is a PDL object?

PDL::Book::Creating Basic Operations to make PDLs

PDL::Book::NiceSlice Cutting out bits of a PDL

PDL::Book::Functions Writing your own functions for PDL

PDL::Book::Threading Threading and Getting rid of FOR loops

PDL::Book::PGPLOT Graphics with PGPLOT

PDL::Book::PLplot Graphics with PLplot

PDL::Book::TriD 3D Graphics with TriD

PDL::Book::Transform Rotating, Scaling and Translating with PDL::Transform

PDL::Book::Complex Complex Numbers

PDL::Book::Pthreads Parallel Computations with pthreads

PDL::Book::PP Getting C routines into PDL with PDL::PP

PDL::Book::Genesis A history lesson on PDL from the creator, Karl Glazebrook.

PDL::Book::Credits Credits for the Book

Suggested Reading Orders
We assume you know Perl, but that you are new to PDL.

First, try out the PDL command line by going through FirstSteps. PDL has
 several ways of displaying
two-dimensional images and producing
 publication quality plots, and so we have PGPLOT and PLplot
for
 producing two dimensional plots either in a computer window or as
 written file formats (PostScript,
PNG, JPEG and more), and we also have
 the capability to produce three dimensional plots in TriD.

The power of PDL is in the ability to carry out threading (known as
 broadcasting in Python) over
N-dimensional PDLs. When you code with
 threading you eliminate the multiple FOR loops that are the
source of
 many slow-downs in code. Reading Threading and Functions will get you up
 to speed and
in the right mind-set.

If you require the speed of C routines in your PDL code, there is also
 the powerful PDL:PP capability
of PDL - you can write C code INLINE in
 your PDL code, and it will be compiled and run when you call
your
 Perl/PDL scripts!

PDL is primarily used by scientists who want access to Scientific
 libraries and data types, so we have
Complex numbers handled by PDL and
 the capabilities of PDL::Transform, the Slatec libraries
accessible in
 PDL::Slatec, and any other libraries that you can access through Perl.

The PDL Book

Page 2

First Steps with PDL
"Maybe there are a few civilizations out there that have decided to stay
 home, piddle around and send
out some radio waves once in a while."

- Annette Foglino, Space: Is Anyone Out There? Most astronomers say yes, Life, 1 Jul 1989.

It can be very frustrating to read an introductory book which takes a
 long time teaching you the very
basics of a topic, in a "Janet and John"
 style. While you wish to learn, you are anxious to see
something a bit
 more exciting and interesting to see what the language can do.

Fortunately our task in this book on PDL is made very much easier by the
 high-level of the language.
We can take a tour through PDL, looking at
 the advanced features it offers without getting involved in
complexity.

The aim of this section is to cover a breadth of PDL features rather
 than any in depth, to give the
reader a flavour of what he or she can do
 using the language and a useful reference for getting
started doing real
 work. Later sections will focus on looking at the features introduced
 here, in more
depth.

Alright, let's do something
We'll assume PDL is correctly installed and set up on
 your computer system (see http://pdl.perl.org/
for details
 of obtaining and installing PDL).

For interactive use PDL comes with a program called perldl. This allows
 you to type raw PDL (and
perl) commands and see the result right away. It
 also allows command line recall and editing (via the
arrow keys) on most
 systems.

So we begin by running the perldl program from the system
 command line. On a Mac/UNIX/Linux
system we would simply type perldl
 in a terminal window. On a Windows system we would type
perldl
 in a command prompt window. If PDL is installed correctly this is
 all that is required to bring
up perldl.

 myhost% perldl
 perlDL shell v1.357
 PDL comes with ABSOLUTELY NO WARRANTY. For details, see the file
 'COPYING' in the PDL distribution. This is free software and you
 are welcome to redistribute it under certain conditions, see
 the same file for details.
 ReadLines, NiceSlice, MultiLines enabled
 Reading PDL/default.perldlrc...
 Found docs database /usr/lib/perl5/.../PDL/pdldoc.db
 Type 'help' for online help
 Type 'demo' for online demos
 Loaded PDL v2.006 (supports bad values)
 pdl>

We get a whole bunch of informational messages about what it is loading for
 startup and the help
system. Note; the startup is completely configurable,
 an advanced user can completely customize
which PDL modules
 are loaded. We are left with the pdl> prompt at which we can type commands.
This kind
 of interactive program is called a 'shell'. There is also pdl2
 which is a newer version of the
PDL shell with additional features.
 It is still under development but completely usable.

Let's create something, and display it:

 pdl> use PDL::Graphics::Simple
 pdl> imag (sin(rvals(200,200)+1))

The PDL Book

Page 3

The result should look like the image below - a two dimensional sin function. rvals is a handy PDL
function for creating an image whose pixel values are
 the radial distance from the central pixel of the
image. With these arguments
 it creates a 200 by 200 'radial' image. (Try 'imag(rvals(200,200))'
and you
 will see better what we mean!) sin() is the mathematical sine function, this
 already exists in
perl but in the case of PDL is applied to all 40000 pixels at
 once, a topic we will come back to. The
imag() function displays the image.
 You will see the syntax of perl/PDL is algebraic - by which we
mean it is very
 similar to C and FORTRAN in how expressions are constructed. (In fact much
 more
like C than FORTRAN). It is interesting to reflect on how much C code
 would be required to generate
the same display, even given the existence of
 some convenient graphics library.

 Figure of a two dimensional C<sin> function.

That's all fine. But what if we wanted to achieve the same results in a standalone
 perl script? Well it is
pretty simple:

 use PDL;
 use PDL::Graphics::Simple;
 imag (sin(rvals(200,200)+1));

That's it. This is a complete perl/PDL program. One could run it by typing perl filename. (In fact
there are many ways of running it, most systems
 allows it to be setup so you can just type filename.
See your local
 Perl documentation - then the perlrun manual page.)

Two comments:

1. The statements are all terminated by the ';' character. Perl is like C
 in this regard. When
entering code at the pdl command line the final
 ';' may be omitted if you wish, note you can
also use it to put multiple
 statements on one line. In our examples from now on we'll often omit
the pdl prompt for clarity.

The PDL Book

Page 4

2. The directive use PDL; tells Perl to load the PDL module, which makes
 available all the
standard PDL extensions. (Advanced users will be interested in knowing
 there are other ways
of starting PDL which allows one to select which bits
 of it you want).

Whirling through the Whirlpool
Enough about the mechanics of using PDL, let's look at some real data! To work
 through these
examples exactly you can download any needed input files from
http://sourceforge.net/projects/pdl/files/PDL/PDL%20Book%20Example%20Data%20Set/
 and we'll
assume you are running any of these examples in the same
 directory as you have downloaded the
input data files.

We'll be playing with an image of the famous spiral galaxy discovered by
 Charles Messier, known to
astronomers as M51 and commonly as the Whirlpool
 Galaxy. This is a 'nearby' galaxy, a mere 25
million light years from Earth.
 The image file is stored in the 'FITS' format, a common astronomical
format,
 which is one of the many formats standard PDL can read. (FITS stores more
 shades of gray
than GIF or JPEG, but PDL can read these formats too).

 pdl> $a = rfits("m51_raw.fits"); # m51_raw.fits is in current directory
 Reading IMAGE data...
 BITPIX = -32 size = 262144 pixels
 Reading 1048576 bytes
 BSCALE = && BZERO =

This looks pretty simple. As you can probably guess by now rfits is the PDL
 function to read a FITS
file. This is stored in the perl variable $a.

This is an important PDL concept: PDL stores its data arrays in simple perl
 variables ($a, $x,
 $y, $MyData, etc.). PDL data arrays are special arrays
 which use a more efficient, compact
storage than standard perl arrays (@a,
 @x, ...) and are much faster to access for numerical
computations. To avoid
 confusion it is convenient to introduce a special name for them, we call them
piddles (short for 'PDL variables') to distinguish them from ordinary Perl
 'arrays', which are in fact
really lists. We'll say more about this later.

Before we start seriously playing around with M51 it is worth noting that we
 can also say:

 pdl> $a = rfits "m51_raw.fits";

Note we have now left off the brackets on the rfits function. Perl is rather
 simpler than C and allows
one to omit the brackets on a function all together.
 It assumes all the items in a list are function
arguments and can be pretty
 convenient. If you are calling more than one function it is however better
to
 use some brackets so the meaning is clear. For the rules on this 'list
 operator' syntax see the Perl
syntax documentation. From now on we'll mostly
 use the list operator syntax for conciseness

Let's look at M51:

 pdl> imag $a;

The PDL Book

Page 5

 Figure of the raw image C<m51_raw.fits> shown with
 progressively greater contrast using the C<imag> command.

A couple of bright spots can be seen, but where is the galaxy? It's the faint
 blob in the middle: by
default the display range is autoscaled linearly from
 the faintest to the brightest pixel, and only the
bright star slightly to the
 bottom right of the center can be seen without contrast enhancement. We
can
 easily change that by specifying the black/white data values (Note: # starts
 a Perl comment and
can be ignored - i.e. no need to type the stuff after it!):

The PDL Book

Page 6

 pdl> imag $a,0,1000; # More contrast

The PDL Book

Page 7

 pdl> imag $a,0,300; # Even more contrast

You can see that imag takes additional arguments to specify the display
 range. In fact imag takes
quite a few arguments, many of them optional. By
 typing 'help imag' at the pdl prompt we can find
out all about the
 function.

It is certainly a spiral galaxy with a few foreground stars thrown in for good
 measure. But what is that
horrible stripey pattern running from bottom right to
 top left? That certainly is not part of the galaxy?
Well no. What we have here
 is the uneven sensitivity of the detector used to record the image, a
common
 artifact in digital imaging. We can correct for this using an image of a
 uniformly illuminated
screen, what is commonly known as a 'flatfield'.

 pdl> $flat = rfits "m51_flatfield.fits";
 pdl> imag $flat;

This is shown in the next figure. Because the image is of a uniform field,
 the actual image reflects the
detector sensitivity. To correct our M51
 image, we merely have to divide the image by the flatfield:

Figure: The 'flatfield' image showing the detector sensitivity of the raw data.

 pdl> $gal = $a / $flat;
 pdl> imag $gal,0,300;
 pdl> wfits $gal, 'fixed_gal.fits'; # Save our work as a FITS file

Well that's a lot better. But think what we have
 just done. Both $a and $flat are images, with 512
pixels by
 512 pixels. The divide operator '/' has been applied over all
 262144 data values in the
piddles $a and $flat. And it was
 pretty fast too - these are what are known as vectorized

operations. In PDL each of these is implemented by heavily optimized
 C code, which is what makes
PDL very efficient for procession of
 large chunks of data. If you did the same operation using normal

The PDL Book

Page 8

perl arrays rather than piddles it would be about ten to twenty times slower
 (and use ten times more
memory). In fact we can
 do whatever arithmetic operations we like on image piddles:

Figure: The M51 image corrected for the flatfield.

 pdl> $funny = log(($gal/300)**2 - $gal/100 + 4);
 pdl> imag $funny; # Surprise!

Or on 1-D line piddles. On on 3-D cubic piddles. In fact piddles can support an infinite
 number of
dimensions (though your computers memory won't).

This the key to PDL: the ability to process large chunks of data at once.

Measuring the brightness of M51
How might we extract some useful
 scientific information out of this image? A simple
 quantity an
astronomer might want to know is how the brightness of the
 the 'disk' of the galaxy (the outer region
which contains the spiral
 arms) compares with the 'bulge' (the compact inner nucleus). Well
 let's find
out the total sum of all the light in the image:

 pdl> print sum($gal);
 17916010

sum just sums up all the data values in all the pixels in the image - in this case the answer is
17916010. If the image is linear
 (which it is) and if it was calibrated (i.e. we knew the relation
 between
data numbers and brightness units) we could work out the
 total brightness. Let's turn it round - we
know that M51 has
 a luminosity of about 1E36 Watts, so we can work out what
 one data value
corresponds to in physical units:

 pdl> p 10**36/sum($gal)

The PDL Book

Page 9

 5.58159992096455e+28

This is also about 200 solar luminosities, (Note we have switched to using p
 as a shorthand for
print - which only works in the pdl and pdl2 shells)
 which gives 4 billion solar luminosities for the
whole galaxy.

OK we do not need PDL for this simple arithmetic, let's get back to
 computations that involve the
whole image.
 How can we get the sum of a piece of an image, e.g. near the centre? Well in PDL there
is more than one way to do it (Perl aficionados call
 this phenomenon TIMTOWTDI). In this case,
because we really want
 the brightness in a circular aperture, we'll use the rvals
 function:

 pdl> $r = rvals $gal;
 pdl> imag $r;
 ...

Remember rvals? It replaces all the pixels in an image with its distance
 from the centre. We can
turn this into a mask with a simple
 operation like:

 pdl> $mask = $r<50;
 pdl> imag $mask;
 ...

The PDL Book

Page 10

The PDL Book

Page 11

Figure: Using rvals to generate a mask image to isolate the galaxy bulge and disk.
 Top row: radial
gradient image $r, and radial gradient masked with less than operator $r < 50.
 Bottom row: Bulge
and disk of the galaxy.

The Perl less than operator is applied to all pixels in the image.
 You can see the result is an image
which is 0 on the outskirts and 1 in
 the area of the nucleus. We can then simply use the mask image
to
 isolate in a simple way the bulge and disk components (lower row) and it
 is then very easy to find
the brightness of both pieces of the M51
 galaxy:

 pdl> $bulge = $mask * $gal
 pdl> imag $bulge,0,300
 ...
 pdl> print sum $bulge;
 3011125

 pdl> $disk = $gal * (1-$mask)
 pdl> imag $disk,0,300
 ...
 pdl> print sum $disk
 14904884

You can see that the disk is about 5 times brighter than the bulge in
 total, despite its more diffuse
appearance. This is typical for
 spiral galaxies. We might ask a different question: how does the
average surface brightness, the brightness per unit area on the sky,
 compare between bulge and
disk? This is again quite straight forward:

 pdl> print sum($bulge)/sum($mask);
 pdl> print sum($disk)/sum(1-$mask);

The PDL Book

Page 12

We work out the area by simply summing up the 0,1 pixels in the mask
 image. The answer is the
bulge has about 7 times the surface
 brightness than the disk - something we might have guessed
from
 looking at the above figure, which tells astronomers its stellar density is
 much higher.

Of course PDL being so powerful, we could have figured this out in one line:

 pdl> print (avg($gal->where(rvals($gal)<50)) /
avg($gal->where(rvals($gal)>=50)))
 6.56590509414673

Twinkle, twinkle, little star
Let's look at something else, we'll zoom in on a small piece of the image:

 pdl> $section = $gal(337:357,178:198);
 pdl> imag $section; # the bright star

Here we are introducing something new - we can see that PDL supports extensions to the Perl
syntax. We can say $var(a:b,c:d...) to specify multidimensional slices. In this case we have
produced a sub-image ranging
 from pixel 337 to 357 along the first dimension, and 178 through 198
along the
 second. Remember pdl data dimension indexes start from zero. We'll talk some
 more about
slicing and dicing later on. This sub-image happens to contain
 a bright star.

At this point you will probably be able to work out for yourself the amount of
 light coming from this
star, compared to the whole galaxy. (Answer: about 2%)
 But let's look at something more involved:
the radial profile of the star.
 Since stars are a long way away they are almost point sources, but our
camera
 will blur them out into little disks, and for our analysis we might want an
 exact figure for this
blurring.

We want to plot all the brightness of all the pixels in this section, against
 the distance from the centre.
(We've chosen the section to be conveniently
 centered on the star, you could think if you want about
how you might determine
 the centroid automatically using the xvals and yvals functions). Well it
 is
simple enough to get the distance from the centre:

 pdl> $r = rvals $section;

But to produce a one-dimensional plot of one against the other we need to
 reduce the 2D data arrays
to one dimension. (i.e our 21 by 21 image section
 becomes a 441 element vector). This can be done
using the PDL clump
 function, which 'clumps' together an arbitrary number of dimensions:

 pdl> $rr = $r->clump(2); # Clump first two dimensions
 pdl> $sec = $section->clump(2);

 pdl> points $rr, $sec; # Radial plot

You should see a nice graph with points like those
 in the figure below showing the drop-off from the
bright centre of the star.
 The blurring is usually measured
 by the 'Full Width Half Maximum' (FWHM) -
or in plain terms how
 fat the profile is across when it drops by half. Looking at the plot
 it looks like this
is about 2-3 pixels - pretty compact!

The PDL Book

Page 13

Figure: Radial light profile of the bright star with fitted curve.

Well we don't just want a guess - let's fit the profile with a function.
 These blurring functions are
usually represented by the Gaussian
 function. PDL comes with a whole variety of general purpose
and
 special purpose fitting functions which people have written for
 their own purposes (and so will you
we hope!). Fitting Gaussians
 is something that happens rather a lot and there is surprisingly
 enough a
special function for this very purpose. (One could use
 more general fitting packages like
PDL::Fit::LM or PDL::Opt::Simplex but that would require more care).

 pdl> use PDL::Fit::Gaussian;

This loads in the module to do this. PDL, like Perl, is modular. We
 don't load all the available modules
by default just a convenient
 subset. How can we find useful PDL functions and modules? Well help
tells us more about what we already know, to find out
 about what we don't know use apropos:

 pdl> apropos gaussian
 PDL::Fit::Gaussian ...
 				 Module: routines for fitting gaussians
 PDL::Gaussian Module: Gaussian distributions.
 fitgauss1d Fit 1D Gassian to data piddle
 fitgauss1dr Fit 1D Gassian to radial data piddle
 gefa Factor a matrix using Gaussian elimination.
 grandom Constructor which returns piddle of Gaussian random
numbers
 ndtri The value for which the area under the Gaussian
probability density function (integrated from minus
 				 infinity) is equal to the argument (cf erfi). Works inplace.

This tells us a whole lot about various functions and modules to do with
 Gaussians. Note that we can

The PDL Book

Page 14

abbreviate help and apropos
 with '?' and '??' when using the pdl or pdl2 shells.

Let's fit a Gaussian:

 pdl> use PDL::Fit::Gaussian;
 pdl> ($peak, $fwhm, $background) = fitgauss1dr($rr, $sec);
 pdl> p $peak, $fwhm, $background;

fitgauss1dr is a function in the module PDL::Fit::Gaussian which fits
 a Gaussian constrained to be
radial (i.e. whose peak is at the origin).
 You can see that, unlike C and FORTRAN, Perl functions can
return
 more than one result value. This is pretty convenient. You can see the
 FWHM is more like 2.75
pixels. Let's generate a fitted curve with this
 functional form.

 pdl> $rrr = sequence(2000)/100; # Generate radial values 0,0.01,0,02..20

 # Generate Gaussian with given FWHM

 pdl> $fit = $peak * exp(-2.772 * ($rrr/$fwhm)**2) + $background;

Note the use of a new function, sequence(N), which generates a new piddle with N values ranging
0..(N-1).
 We are simply using this to generate the horizontal axis values
 for the plot. Now let's overlay
it on the previous plot.

 pdl> hold; # This command stops new plots starting new pages
 pdl> line $rrr, $fit, {Colour=>2} ; # Line plot

The last line command shows the PDL syntax for optional function
 arguments. This is based on the
Perl's built in hash syntax. We'll say
 more about this later in PDL::Book::PGPLOT. The result should
look a
 lot like the figure above. Not too bad. We could perhaps do a bit
 better by exactly centroiding
the image but it will do for now.

Let's make a simulation of the 2D stellar image. This is equally
 easy:

 pdl> $fit2d = $peak * exp(-2.772 * ($r/$fwhm)**2);
 pdl> release; # Back to new page for new plots;
 pdl> imag $fit2d;
 ...
 pdl> wfits $fit2d, 'fake_star.fits'; # Save our work

But the figure below is a
 boring. So far we have been using simple 2D graphics from the
PDL::Graphics::Simple library. In fact PDL has more
 than one graphics library (some see this as
a flaw, some
 as a feature!). Using the PDL::Graphics::TriD library
 which does OpenGL graphics
we can look at our simulated
 star in 3D (see the right hand panel);

The PDL Book

Page 15

Figure: Two different views of the 2D simulated Point Spread Function.

 pdl> use PDL::Graphics::TriD; # Load the 3D graphics module
 pdl> imag3d [$fit2d];

If you do this on your computer you should be able to look at the graphic from
 different sides by

The PDL Book

Page 16

simply dragging in the plot window with the mouse! You can
 also zoom in and out with the right
mouse button. Note that imag3d has it's
 a rather different syntax for processing it's arguments - for
very good reasons
 - we'll explore 3D graphics further in PDL::Book::TriD.

 To continue: Select the TriD window and type q

Finally here's something interesting. Let's take our fake star and place it
 elsewhere on the galaxy
image.

 pdl> $newsection = $gal(50:70,70:90);
 pdl> $newsection += $fit2d;
 pdl> imag $gal,0,300;

We have a bright new star where none existed before! The C-style +=
 increment operator is worth
noting - it actually modifies the contents of $newsection in-place. And because $newsection is a
slice of $gal
 the change also affects $gal. This is an important property of slices - any
 change to the
slice affects the parent. This kind of parent/child
 relationship is a powerful property of many PDL
functions, not just slicing.
 What's more in many cases it leads to memory efficiency, when this kind of

linear slice is stored we only store the start/stop/step and not a new copy of
 the actual data.

Of course sometimes we DO want a new copy of the actual data, for example if we
 plan to do
something evil to it. To do this we could use the alternative form:

 pdl> $newsection = $newsection + $fit2d

Now a new version of $newsection is created which has nothing to do with the original $gal. In fact
there is more than one way to do
 this as we will see in later chapters.

Just to amuse ourselves, lets write a short script to cover M51 with dozens of fake
 stars of random
brightnesses:

 use PDL;
 use PDL::Graphics::Simple;
 use PDL::NiceSlice; # must use in each program file

 srand(42); # Set the random number seed
 $gal = rfits "fixed_gal.fits";
 $star = rfits "fake_star.fits";

 sub addstar {
 ($x,$y) = @_;
 $xx = $x+20; $yy = $y+20;
 # Note use of slice on the LHS!
 $gal($x:$xx,$y:$yy) += $star * rand(2);
 }

 for (1..100) {
 $x1 = int(rand(470)+10);
 $y1 = int(rand(470)+10);
 addstar($x1,$y1);
 }
 imag $gal,0,1000;

This ought to give the casual reader some flavour of the Perl syntax - quite simple
 and quite like C

The PDL Book

Page 17

except that the entities being manipulated here are entire
 arrays of data, not single numbers. The
result is shown, for amusement,
 in the figure below and takes virtually no time to compute.

Figure: M51 covered in fake stars.

Getting Complex with M51
To conclude this frantic whirl through the possibilities of PDL, let's look at
 a moderately complex (sic)
example. We'll take M51 and try to enhance it to reveal the
 large-scale structure, and then subtract
this to reveal small-scale structure.

Just to show off we'll use a method based on the Fourier transform - don't
 worry if you don't know
much about these, all you need to know is that the
 Fourier transform turns the image into an 'inverse'
image, with
 complex numbers, where each pixel
 represents the strength of wavelengths of different
scales in the image. Let's do it:

 pdl> use PDL::FFT; # Load Fast Fourier Transform package
 pdl> $gal = rfits "fixed_gal.fits";

Now $gal contains real values, to do the Fourier transform it has to
 have complex values. We create
a variable $imag to hold the imaginary
 component and set to zero.(For reasons of efficiency complex
numbers
 are represented in PDL by separate real and imaginary arrays - more about this
 in Chapter
2.)

 pdl> $imag = $gal * 0; # Create imaginary component, equal to zero
 pdl> fftnd $gal, $imag; # Perform Fourier transform

fftnd performs a Fast Fourier Transform, in-place, on arbitrary-dimensioned data (i.e.
 it is
'N-dimensional'). You can display $gal after the FFT but you won't see
 much. If at this point we ran
ifftnd to invert it we would get the original $gal back.

The PDL Book

Page 18

If we want to enhance the large-scale structure we want to make a filter to only
 let through
low-frequencies:

 pdl> $tmp = rvals($gal)<10; # Radially-symmetric filter function
 pdl> use PDL::ImageND; # provides kernctr()
 pdl> $filter = kernctr $tmp, $tmp; # Shift origin to 0,0
 pdl> imag $filter;

You can see from the image that $filter is zero everywhere except near the origin
 (0,0) (and the 3
reflected corners). As a result it only lets through
 low-frequency wavelengths. So we multiply by the
filter and FFT back to
 see the result (cmul is complex multiplication):

 pdl> ($gal2, $imag2) = cmul $gal, $imag, $filter, 0;
 pdl> ifftnd $gal2, $imag2;
 pdl> imag $gal2,0,300;

The PDL Book

Page 19

Figure: Fourier filtered smoothed image and contrast enhanced image with the smoothed image
subtracted.

The PDL Book

Page 20

Well that looks quite a bit different! Just about all the
 high-frequency information has vanished. To see
the high-frequency
 information we can just subtract our filtered image from the original to
 form the
right hand image.

 pdl> $orig = rfits "fixed_gal.fits";
 pdl> imag $orig-$gal2,0,100;

Roundoff
Well that is probably enough abuse of Messier 51. We have demonstrated the ease
 of simple and
complex data processing with PDL and how PDL fits neatly in to
 the Perl syntax as well as extending
it. You have come across basic
 arithmetical operations and a scattering of useful functions - and
learned how
 to find more. You certainly ought now to have a good feel of what PDL is all
 about. In the
next chapter we'll take a more comprehensive look at the basic
 parts of PDL that all keen PDL users
should know.

What is a Piddle?
PDL uses Perl `objects' to hold PDL data, affectionately called a piddle. An `object' is like a
user-defined data-type and is a very powerful feature of Perl, PDL creates it's own class of `PDL'
objects to store piddles. These look like ordinary Perl variables such as $x, $Foo, $MyData, etc.

Most of the time you can forget about the fact that piddles are objects and treat them like ordinary
variables:

 $x = rfits 'file.fits';
 $y = rvals($x);
 $z = $x/$y;
 print sqrt($x+$y+$z);

The only time the distinction becomes important is when creating piddles and using the `=' operator.

Piddles are NOT Perl `arrays'
It is now time to answer a question which has probably been nagging at the back of your mind for a
while.

Why bother with piddles? Why not just use normal Perl `arrays'?

By Perl `arrays' we of course mean entities like @x and @Data z which one would normally create
and manipulate like this:

 @x = (1,2,3);
 push @x, 42;
 $y = pop @x;

So why don't we just use Perl `arrays'? Several very good reasons:

It is impossible to manipulate Perl `arrays' arithmetically as one would like. i.e.:

 @y = @x * 2; # Wrong!

can not be made to operate element by element.

Perl `arrays' are really what are known in computer science as `lists' (and are represented internally
by a list data structure). In fact if the PDL-Porters had their evil way they would ban the term `array'
from all of the standard Perl documentation and books. This is why the term `piddle' was invented for
use in PDL for what we think really are `true arrays'.

The PDL Book

Page 21

Perl lists are intrinsically one-dimensional. You can have `lists of lists' but this is not the same thing as
true multi-dimensional arrays. Honest.

Perl lists consume a lot of memory. At least 20 bytes per number, of which only a few are for the
actual value. This is because Perl lists are flexible, and can contains text strings as well as numbers.
This flexibility requires an internal complex data structure which contains extra information such as a
place holder for the number, a place holder for the text and pointers forward and back along the list.

Perl lists are scattered about memory. The list data structure means consecutive numbers are not
stored in a neat block of consecutive memory addresses as C and FORTRAN programmers are used
to. This makes it difficult to pass the arrays to low-level C and FORTRAN routines for processing --
the numbers must be collected together -a process known as `packing' -- processed and unpacked
back into lists. If you have `lists of lists' then it get's even worse.

Perl lists do not support the range of data types that piddles do (byte arrays, integer arrays, single
precision, double precision, etc.)

That is why PDL does not use Perl lists. Just to be clear from now on we'll always refer to PDL
numeric data arrays as `piddles' and Perl-style number/text arrays as `lists'.

Constructing PDLs
PDL variables are a new class of object within Perl. There are three
 main ways to construct them: via
the pdl constructor; via one of the
 special index PDL constructors; or by reading in some external
data. In
 addition, there are hooks for stuffing your own raw data into a PDL
 variable. The more basic
constructors are here.

The basic constructor, pdl()
The most basic way to make a PDL is with the function pdl(). You can
 feed pdl just about anything
that makes sense: a perl scalar, a perl
 list, a nested perl list, another PDL, or even a perl list of PDLs.
It
 will return an appropriately-dimensioned PDL containing those values.
 Here are some examples:

 $a = pdl(5); # double-precision scalar
 $a = pdl(short,5); # short-integer scalar
 $a = pdl(1,2,3); # 3-PDL (one dim)
 $a = pdl([1,2,3]); # 3-PDL, another way (just one dim)
 $a = pdl([[1,2,3]]); # 3x1-PDL (two dims)
 $a = pdl([[1,2,3],[4,5,6]]); # 3x2-PDL (two dims)
 $a = pdl "[[1,2,3],[4,5,6]]"; # Even strings from print output!

In the last couple of examples, notice that the innermost nested lists form the 0th dimension of the
PDL.

If you aren't sure whether a particular variable contains a PDL or not (and sometimes you care:
there's a slight difference between a scalar PDL and a perl scalar!) you can always safely wrap a pdl
call around it to be sure.

Array allocation: zeroes() and ones()
The two operations zeroes and ones generate PDLs full of the value 0 and of the value 1,
respectively. (well, what did you expect?) They're useful for allocating data in a hurry. If you feed in a
list of perl scalars, they are used as a list of dimensions for the new PDL that gets returned. If you
feed in a PDL, either one will simply match the size of the PDL. Examples:

 $a = zeroes(3,3); # $a becomes a 3x3 array filled with 0
 $a = zeroes(byte,3,3); # ditto, only bytes instead of doubles
 $b = ones($a); # $b becomes a 3x3 array filled with 1
 $p = pdl(1,2,3); # A PDL containing [1 2 3]
 $c = zeroes($p); # A 3-PDL containing [0 0 0]

The PDL Book

Page 22

 $d = zeroes($p->list); # A 1x2x3-PDL ($p->list is a Perl list)

Index PDLs: xvals, yvals, rvals, sequence, ndcoords
It is surprisingly useful to be able to generate "index PDLs": arrays whose elements merely
enumerate their coordinates. PDL supplies a passel of index PDL constructors.

The basics are xvals, yvals and zvals, which work like zeroes and ones, but construct an index
PDL that works along the 0, 1, or 2 axis, respectively. For example:

 pdl> print xvals(3,3)
 [
 [0 1 2]
 [0 1 2]
 [0 1 2]
]
 pdl> print yvals(3,3)
 [
 [0 0 0]
 [1 1 1]
 [2 2 2]
]

If you want more generality or higher dimensionality, axisvals works the same way but lets you
specify the index dimension by number.

Sometimes you want a PDL that contains radii from a given point. You could always apply the
Pythagorean theorem explicitly:

 $x=xvals(10,10)-5;
 $y=yvals(10,10)-5;
 $a=sqrt($x*$x + $y*$y);

but it's much easier to use rvals, which does that stuff for you:

 pdl> $a = rvals(3,3); print $a;
 [
 [1.4142136 1 1.4142136]
 [1 0 1]
 [1.4142136 1 1.4142136]
]

As with the others, rvals works in any number of dimensions, and can either take a dimension list or
another PDL to match. There are a number of adjustments that you can make to rvals; see the
online documentation for details.

Finally, sometimes you want to create a full vector index PDL; for example, to enumerate all the
coordinates in a 100x100 image you would want a 2x100x100-PDL. You can assemble one from
xvals, yvals, or just use ndcoords. Here's how to do it either way:

 $a = pdl(xvals(100,100), yvals(100,100))->mv(0,1); # slow way
 $a = ndcoords(100,100); # fast way

ndcoords works like all the other index constructors, except that it adds an additional dim to the
beginning of its return value, to handle the fact that each index is a vector that points into an
N-dimensional array. ndcoords and range together can be used to chop up an image into

The PDL Book

Page 23

manageable tiles; see Section [sub:Range]
 , below.

Specialty constructors
PDL contains two important internal constructors, PDL::new_from_specification and null,
that are useful for importing data en masse or for other special applications. If you're just starting out,
you probably don't really need to know this stuff just yet - you'll probably find the various data import
techniques in [sec:Getting-values-into] more useful. So skip ahead if you like.

null takes no arguments and returns a null PDL. A null PDL has no values, but (unlike the empty
PDL) can be assigned to. Null PDLs are placeholders that automatically resize themselves to fit any
dimensional context. They're mainly intended for internal use, but you might find them helpful in odd
contexts (for example, you can pass a null PDL into a function as a write-back return value).

PDL::new_from_specification is the engine that zeroes, rvals, and such use for initial
construction. It takes the same sort of arguments as zeroes (an optional type and a PDL template or
a size list), but doesn't bother with any initialization of the newly allocated RAM. This is especially
useful if you're just going to stuff your own values into the new PDL anyway.

Getting values into and out of PDLs
Unless you can get data in and out of your PDLs they won't do you much good. Most large blocks of
data are handled by direct file I/O (Chapter [cha:File-I/O]), but you will also want to get normal Perl
values into and out of your PDLs. Here are the basic ways to get data into your PDLs (from perl, other
PDLs, or random chunks of memory), and back out again (into perl, into random chunks of memory,
or into ASCII). For displaying your data you will want to look at Chapter [cha:Graphics].

Construction: slurping Perl arrays

The simplest way to turn a bunch of Perl data into a PDL is by calling pdl(), the PDL constructor.
The constructor pokes and prods the array structure of its argument(s), and creates a PDL that
contains all the values in whatever nested array you've come up with. For example,

 $pdl_all = pdl(@pdl_source);
 $pdl_3x3 = pdl([00,01,02],[10,11,12],[20,21,22]);

That is certainly the most convenient (and probably the fastest) way to stuff a bunch of values from
Perl variables into a PDL.

Assignment with .=

PDL distinguishes between two kinds of assignment: global assignment
 (the usual = operator) and
threaded (computed) assignment (the .= operator).

PDLs are best thought of as something like perl refs or C pointers: the variable points to the location
in memory where the data reside. That makes array indexing and slicing straightforward, since you
can hold a slice of a larger array in a related variable, without expensive memory copies. The global =
operator is used to set the value of the pointer. The threaded .= operator is used to set the value of
the data that are contained in the PDL. The two operators work quite differently. For example:

 $a = xvals(3); # 1D-PDL: values are (0,1,2)
 $b = zeroes(3,4); # 3x4 array of zeroes
 $c = zeroes(3,4); # 3x4 array of zeroes
 $b = $a; # $b becomes a clone of $a
 $c .= $a; # $c becomes 4 copies of $a

puts two quite different values into $b and $c. At the end of the code, $b and $a are linked (they
point to the same area of memory), so assigning to the elements of $b changes $a too. But $c
remains a separate variable, whose elements happen to have received values from the corresponding
elements of $a.

The PDL Book

Page 24

But that's not all! $b and $c end up with completely different shapes. Because $c started out as a
3x4-PDL, the threading engine duplicates $a (which is a 3-PDL) for each row of $c. The .= operator
is called threaded assignment, because it causes its right-hand argument to be expanded and
vectorized exactly as any other operand would. Threading is explained in detail in Section

[sec:Dimensionality-and-Threading]
 .

Importing data directly from memory: get_dataref

PDL lets you access the memory of a PDL variable directly, using a perl string variable. You normally
won't have to use this mechanism, but I include it here for completeness - if you are just learning PDL,
you can probably skip this subsection.

The string variable mechanism gives you access to the low-level representation of the data (which is
the same as your C compiler would use). The string access routines are get_dataref and
upd_data. get_dataref takes a PDL argument and returns a perl scalar ref that points to the
PDL's data as a perl string. If you change the string, Perl might move it in memory, so you must then
update the pointers in the PDL variable to match. That is what upd_data is for.

Here's a brief example of how to import a large hunk of memory into a PDL. In this case, the hunk is
three 1000x1000 image planes that you have somehow imported into a perl string, e.g. by reading
from a file or executing a PerlXS script. The three image planes are to represent R, G, and B in a PDL
with dimensions (3x1000x1000).

 $pdl = PDL->new_from_specification(byte,1000,1000,3);
 $dref = $pdl->get_dataref; # $$dref is the PDL data as a string.
 $$dref = $data; # Overwrite the string.
 $pdl->upd_data(); # Make sure the PDL knows it changed.
 $rgb = $pdl->mv(2,0); # 3x1000x1000.

Here, $$dref is a Perl string that occupies the same location in RAM as the data in $pdl. Unless
you're using 2-byte Unicode strings, the string has as many characters as there are bytes in the
machine representation of the PDL. This example has a 3MB string - but a double-precision PDL with
the same dimensions would have a 24MB string. Remember, new_from_specification allocates
the PDL but doesn't initialize its contents - so initially the string is full of whatever garbage happened
to be in that chunk of memory. Overwriting the string with a simple copy (or perl sysread operation)
rapidly loads the binary data directly into $pdl, with no type conversion at all. (Warning -
 you can
hose yourself if you shorten the string, which will de-allocate the end of the PDL!) Afterward, you have
to update the internal data pointers in $pdl, in case Perl moved the string around. The final mv call
makes sure that the dimensionality is right, without shuffling the actual bytes around.

If you use this low-level mechanism, you are responsible for making sure that the data you put into
the new PDL has the same form as the PDL's formal data type! You are also responsible for figuring
out byte swapping for your machine - the bytes in the string are in machine order, not network order.

Conversion to Perl types: at and list

You can get a PDL scalar out into the Perl world with at, which requires the index of the scalar to pull
out:

 pdl> $a = xvals(5)*2; # $a is a PDL
 pdl> $a4 = $a->at(4); # $a4 is a perl scalar

You can also export a whole PDL with list:

 pdl> @a = $a->list;
 pdl> for($a->list) { print $_, - ; }
 0 - 2 - 4 - 6 - 8 -

The PDL Book

Page 25

Be careful with at, as you almost never want to use it - it is tedious for anything nontrivial, and
extremely slow! Particularly if you find yourself placing an at call inside a for loop, you should
probably stop and think about how to use threading for your problem - see below.

Data Types and Contexts
Because PDL is a hybrid language, it's important to understand Perl's data structures as well as
PDL's. Normal Perl variables are represented in a way that makes sense for Perl's original application
- small to medium sized "glue" tasks - while PDL variables and arrays ("PDLs") have a more
traditional typing scheme.

Unlike most other languages, ordinary Perl uses "polymorphous" (or "behind-your-back") typing.
While the traditional simple types (boolean, string, short, long, float, double) are all represented, the
language doesn't distinguish between the different types. The Perl engine keeps track of each
variable's representation, and delivers to you the most appropriate representation depending on
context. For example, + is an arithmetic operator, so the expression "5" + 2 yields the number 7
even though one of its terms began life as a string.

PDL variables are implemented on top of Perl's normal variable system. A
 PDL is effectively a new
type of perl scalar, that can contain a whole
 array of numeric values. PDLs are strongly typed, but are
still slightly
 influenced by Perl's notion of context. In particular, PDLs behave
 slightly differently in
numeric, boolean, and string context. In Perl
 numeric contexts, PDLs act normally. In boolean/logical
contexts, they
 act like boolean values in the C language - the only false value is 0, and any nonzero
value is treated as true (note: Not all languages
 treat nonzero values as logical-true, which may come
as a surprise to C
 or Perl programmers. For example, some FORTRANs and RSI's IDL language
 use
the least-significant bit of integer variables as the boolean truth
 value of the integer).

In Perl string contexts, PDLs act like descriptive multiline strings (or
 the string "TOO LONG TO
PRINT"). See the following subsections for
 details.

Refresher on Perl Data Types & Contexts

While the underlying representations of objects change, Perl itself recognizes only a few distinct
variable types. These are "
 scalar", "ref", "array" (also called "list"), and "hash". (PDLs are
implemented as special refs that are opaque to perl itself; perl treats them as scalars). The ones
relevant to PDLs are scalars, lists, and hashes.

Scalar variables or expressions hold a single value - a string,
 a number, the undefined value,
or a reference ("ref") to one of the
 other basic types (see below). A scalar - even one that
carries a
 numeric value - is slightly different than a PDL with one element.

List values (often called "arrays" by the general Perl
 community) are collections of scalars
that are indexed by number.
 Unlike normal arrays or PDLs, perl lists are expanded
automatically as
 needed, so you can address any element whether it exists or no. List

elements can contain any perl scalar value.

Hash values are collections of scalars that are indexed by
 string. Hashes act like lookup
tables or dynamic structures. Instead
 of being numbered, each element is addressed by
name.

Refs are special scalar values that hold pointers to other data
 types. They have a different
name than pointers, to remind you that
 they are podiatrically friendly - it's much harder to
shoot yourself
 in the foot with refs than it is with pointers. Perl variables
 maintain a reference
count (like UNIX files) and are automatically
 deallocated when the last reference disappears -
so you don't have to
 keep track of whether a ref is valid or no. Refs come in four basic
 flavors:
scalar refs, list refs, hash refs, and code refs.

Refs can be used to "roll up" large data structures (like lists) into
 a single scalar value; this is
how Perl implements multi-dimensional
 lists and complex data structures. In addition, refs may
be "blessed"
 into a particular object class; this is the mechanism that Perl uses
 for object

The PDL Book

Page 26

oriented programming. Blessing merely associates the target
 of the ref with a particular kind of
object. PDLs are implemented as
 blessed Perl refs, so that a PDL (which may hold a million
values) may
 appear wherever you can put a Perl scalar.

PDL Data Types

PDLs are strongly typed: when you create a PDL, it gets a particular representation and stays that
way. The basic types are familiar to C programmers: byte, short, unsigned short, long, long long, float,
and double. You can compile 64-bit support into your copy of PDL, and have access to wide doubles
and other such exotica. Complex numbers are supported as a subclass of PDL; see Chapter
[cha:Subclass-Smorgasbord].

PDL types are automatically converted as necessary within arithmetic expressions, at some cost in
speed. Numeric expressions run faster between PDLs of the same type than between PDLs of
different types, but all numeric expressions work more or less the way a C programmer would expect,
with data types being automagically promoted to the highest complexity type that is used in each
expression.

PDLs and Perl Contexts

While the representation of each PDL is fixed, the interpretation is different in each of the three main
Perl scalar contexts:

Numeric context is what you get if you use PDLs in the usual way - adding, subtracting, and such.
Normal numeric operations act elementwise, and each array preserves its storage class (char/byte,
short-int, long-int, float, double, etc.). If you mix a PDL with a Perl variable in numeric context (for
example, pdl(2,3,4)+5), then the Perl variable is "promoted" to a PDL.

Boolean context is what you get if you use a PDL in a branch statement like if or while or even
the && and || operators. Multi-element PDLs are not allowed in this context, to avoid the confusion
inherent in non-deterministic branching (&& and || are short-circuit operators that don't evaluate the
second term if doing so would be redundant). Single-element PDLs are treated as TRUE if they are
nonzero and FALSE if they are zero. (Note that the bitwise logical operators, such as & apply
numeric, rather than boolean, context - so you can do elementwise Boolean arithmetic with &, |, and
^ - but not with &&, ||, and ^^.

String context is what you get if you use a PDL as a string. The PDL
 gets converted to a
human-readable string suitable for printing. The
 new pdl() string input capability allows one to
convert printed
 piddles back into the original object. The feature includes support
 for MATLAB-style [
 ;] syntax as well.

Because string conversion is intended for use with print, PDLs
 that are moderately large (more than
about 1,000 elements) don't get
 converted - the string that you get back is TOO LONG TO PRINT.
String
 context is easy to remember as "just" a way to give you direct access
 to the output of print:
use a PDL as if it were a string, and you get
 the string that would be printed.

BAD Values

PDL lets you propagate bad/missing values in your data. You can set a particular numeric value that
will be treated as BAD and ignored by the underlying code.

You can mark values BAD with the setbadif and setbadat methods. Bad values are treated as
truly missing by statistical routines and collapse operators (that summarize each row of a PDL)
 and as
poisonous by arithmetic routines. For example, average and sumover ignore bad values
completely, multiplication will mark appropriate output values as bad, and convolve and
convolveND will cause bad patches to spread throughout a block of data.

Dataflow
"Dataflow" is the concept that multiple variables can remain connected to one another (so that data
flows between them). PDL allows you to keep multiple variables that refer to the same underlying

The PDL Book

Page 27

data. For example, if you extract a subfield of a large data array you can pass it to subroutines and
other expressions just like any other PDL, but changes will still propagate back to the large array
unless you indicate otherwise.

In general, PDL's element-selection operators (such as slicing and indexing) maintain dataflow
connections unless they are explicitly severed. To support dataflow, PDL has two different kinds of
assignment: the global assignment operator = and the computed assignment operator .=.

Global assignment is used to create new PDLs, and computed assignment
 is used to insert values
into existing PDLs. Many other languages,
 such as FORTRAN and IDL, don't maintain dataflow for
slices of arrays
 except in the special case where the slice operation is on the
 left-hand side of an
assignment; in that case, those languages assume
 computed assignment rather than global
assignment. That nuance sweeps
 under the rug the differences between the two types of assignment.
It
 also yields many special cases that do not work correctly in those
 languages - for example, array
subroutine parameters in IDL are passed by
 reference and can hence be used to change the original
array - but
 array slices are copied before being passed, so the original array
 does not change. C
sidesteps the issue by not (directly) supporting
 array slices. One result is that you can keep multiple

representations of your data, and work on the representation that is
 most convenient.

For example:

 pdl> $a = xvals(5);
 pdl> $b = $a(2); # global
 pdl> $b .= 100; # computed - flows back to $a
 pdl> print $a;
 [0 1 100 3 4]

Here, $a and $b remain connected by the slicing/indexing operation, so the change in $b flows back
to $a. Most indexing operations maintain dataflow.

At times, you want to ensure that your variables remain separate or to make a physical copy of your
data.

The copy operator makes a physical copy of its argument and returns it. In general, if you want a real
copy of something, just ask for it:

 pdl> $a = xvals(5);
 pdl> $b = $a(2)->copy;
 pdl> $b .= 100;
 pdl> print $a;
 [0 1 2 3 4]

or, even more straightforwardly,

 pdl> $a = xvals(5);
 pdl> $c = $a; # $c and $a remain connected
 pdl> $b = $a->copy; # $b is a (separate) copy of $a

The sever operator is slightly more subtle. It acts in place on its argument, cutting most kinds of
dataflow connection. It cannot disconnect two variables that were cloned with Perl's =; it can only
sever the dataflow connection between related PDLs. The wart is present in current versions that rely
on the Perl 5 engine, because it is not possible to overload the built-in = operator in Perl 5.

 pdl> $a = xvals(5);
 pdl> $b = $a(2:3)->sever; # $b is a slice of $a: gets separated
 pdl> $b += 100; print $a; # changing $b doesn't affect $a.
 [0 1 2 3 4]

The PDL Book

Page 28

 pdl> $c = $a->sever; # $c is a clone of $a: still connected
 pdl> $c += 100; print $a; # changing $b affects $a.
 [100 101 102 103 104]

Threading
Array languages like PDL perform basic operations by looping over an entire array, applying a simple
operation to each element, row, or column of the array. This process is called threading. Threading is
accomplished by the threading engine, which matches up the sizes of different variables and ensures
that they "fit". The threading engine is based on constructs from linear algebra (but is slightly more
forgiving than most math professors).

Most operations act on the first few dimensions of a PDL. These first dimensions are active
dimensions and any dimensions after that are called thread dimensions. The active dimensions must
match any requirements of the operator, and the thread dimensions are automatically looped over by
the threading engine. The operator sets the number of active and thread dimensions. A given
operator may have 0 active dimensions (e.g. addition, +), 1 active dimension (e.g. reduce operators
like sumover and vector operators like cross), 2 active dimensions (e.g. matrix multiplication), or
even more.

You can rearrange the way that an operator acts on a PDL by rearranging the dim list of that PDL, to
bring dims down into the active position(s) for an operation or to bring them up to be threaded over.
These rearrangements are a generalization of matrix transposition, though in general they are quite
fast as they don't actually transpose the data in memory - only rearrange PDL's internal metadata that
explain how the block of memory is to be used.

Threading rules

PDL operators that act on two or more operands require the thread dimensions of each operand to
match up. The threading engine follows these rules for each dim (starting with the 0 dim and iterating
through to the highest dim in either operand):

If both operands have the dim and it has a size greater than 1 in each operand, then the size
must be the same for both!

print pdl(1,2,3) * pdl(3,4) doesn't work, because dim 0 of the left operand
has size 3 and dim 0 of the right operand has size 2.

print pdl(1,2,3)*pdl(4,5,6) prints the string [4 10 18].

If both operands have the dim and it has size 1 in at least one operand (it is a trivial dim), then
the dim is "extended" as a dummy dimension. This is a generalization of scalar multiplication
in linear algebra.

print pdl(1,2,3) * pdl(2) prints the string [2 4 6].

If a dimension exists in one operand and not in the other, it is treated as a virtual trivial dim

print pdl([1,2],[3,4]) * pdl(3) prints the string [[3 6] [9 12]].

If one operand is a PDL and the other is a Perl scalar, the scalar is PDL-ified before the
operation

print pdl([1,2],[3,4]) * 3 prints the string [[3 6] [9 12]].

Controlling threading and dimension order: xchg, mv, reorder, flat, clump, and reshape

Because rearranging the dim list of a PDL (i.e. transposing it) is the way to control the threading
engine, PDL has many operators that are devoted to rearranging dim lists. Here are six of them:

transpose - matrix transposition

The PDL Book

Page 29

$at=$a->transpose will yield the transpose of a matrix $a (that is, with the 0 and 1 dims
exchanged); you can use $a->inplace->transpose to change the variable itself. Of course, if $a
has more than two dims, it is treated as a collection of matrices (the other dims are threaded over).

xchg - generalized transposition

You can generalize transpose to any two dims with xchg - just give the index numbers and those two
indices get exchanged (transposed): $at = $a->xchg(0,1) is the same as using transpose, but
you can also say (for example) $ax = $a->xchg(0,3).

mv - dim reshuffling

Using mv shifts a dim from its original location to a new location; all the other dims stay in the same
relative order but get shifted to make room and/or fill up the old slot. You can say, for example,$b =
$a->mv(3,0) to move dimension 3 to the 0 slot. Afterward, $b will have the dimensions of $a in the
order (3,0,1,2).

reorder - arbitrary redimensioning

This is useful for carrying out many transpositions at once. You specify the order in which the old
dimensions should appear in the new PDL: $b=$a->reorder(3,0,1,2) is the same as
$b=$a->mv(3,0), and $at=$a->reorder(1,0) does the same thing as $at=$a->transpose.
You can reorder all the dimensions of your PDL or just the first few - if you ignore later dimensions
they carried along "for the ride", keeping the same order in which they came.

flat - flatten a PDL

Flat reduces a PDL of arbitrary dimension to one with a single long dimension. The 0 dimension runs
fastest in the resulting 1-D PDL, and the last dimension runs slowest. For example, if $a is a 120x120
image then $a->flat is a 1-D array of 14400 values. That is useful, for example, for making a
reduce operator (see Section [sub:Collapse-Operators]) work on a whole PDL at once. In the above
example, $a->average would return a 120-array of row average brightnesses, but
$a->flat->average would return the average brightness of the whole image (or, if $a had more
dimensions) the average brightness of the whole collection.

clump - flatten specific dims

Clump is useful for making an operation that normally works on one dimension work on more at once.
For example, $im->average reduces an NxMx3 RGB image into a Mx3 array of row-average
brightnesses. If you want the average brightness of each color throughout the whole image, you can
say either $im->average->average or $im->clump(2)->average, to get a 3-array of average
brightnesses for R, G, and B.

reshape - allocate dims yourself

With reshape you can reassign the block of memory that makes up a PDL, cutting it up however you
please. For example, if $a is a 60x60 image, you can say $b=$a->reshape(100,36) to create
instead a 100x36 image. The product of the new dimensions should be less than or equal to the
product of the old dimensions, or strange things may happen!

Dummy Dimensions

Dummy dimensions are bookkeeping dimensions that act to the threading engine like complete
dimensions but in fact repeat the same data in each position in the new dimension. A dummy
dimension is simply a convenient bookkeeping convention; no extra memory is allocated for it. You
create dummy dimensions with the dummy operator or via the slicing syntax explained elsewhere.

The dummy operator takes two parameters: a position at which the dummy dimension is to be
inserted into the dim list, and a size. For example, if $a is a 100-array, then $b=$a->dummy(0,50)
makes $b a 50x100 image - except that each column of $b points to the same piece of memory, so

The PDL Book

Page 30

that assigning to any element of $b changes a whole row.

You can "physicalize" a dummy dimension by making an explicit copy. For example,
$b=$a->dummy(0,50)->copy makes $b a 50x100 image, each column of which happens to
contain the same data, but in this case every pixel of $b is allocated separately from memory, so that
assigning to $b works in the normal way.

Collapse/Reduce Operators and Reduction

PDL contains many "collapse operators": enough of them that they deserve special attention as a
group. A collapse operator has a single active dim. It summarizes elements along each row (the 0
dim) of a PDL, returning the summary of that row as a single number. Thus, a collapse operator will
reduce a D-dimensional PDL to D-1 dimensions. The average, sumover, and andover operators are
examples of collapse operators: each one has a single active dim and produces the average, sum, or
logical AND (respectively) of everything along that dim of the argument PDL. To average over a dim
other than the 0 dim, you must move that dim to the 0 position. For example, to convert a color image
that is (NxMx3) to a black-and-white image that is (NxM) you can say $bw=$rgb->mv(2,0)->average.
For historical reasons, some documentation refers to them as "reduce operators", because they
reduce the dimensionality of their operands.

PDL Headers

Every PDL can contain a "header" - a perl hash ref (that is, a collection of keyword/value pairs) that
stores metadata about the PDL itself. Some of the built-in routines are aware of the FITS WCS format
for metadata about scientific images, and use the header slot to store a WCS coordinate system
about the PDL; but most operations do not use or affect the header at all. You are free to store
whatever data you like in it.

An internal flag associated with each PDL controls whether the header is propagated to derived
PDLs. Copying the header can be a time-consuming operation, many times slower than arithmetic on
small PDLs - but it can be quite convenient as well. PDL keeps the copying flag false by default on
most new PDLs, but if you set it to true (using the hdrcpy method, see below), then the both the
header and the copy flag will be copied to derived PDLs.

Convenient interfaces exist to use an Astro::FITS::Header tied hash instead of a normal Perl hash ref.
Astro::FITS::Header tied hashes act like normal Perl hashes but force case-insensitivity and provide
some control over the card structure of the underlying FITS header.

hdr & fhdr - access PDL header elements

You can access elements the header of a PDL by inlining the hdr or fhdr method into a hash
dereference: $a->hdr->{keyword}=$value;, or $val=$a->hdr->{keyword}. If the header
doesn't exist, then it is autogenerated. The only difference between hdr and fhdr is that, if no header
exists, fhdr autogenerates tied FITS header objects while hdr autogenerates normal Perl hashes.

gethdr & sethdr - manipulate a complete PDL header

You can get or store the current header of a PDL with the gethdr and sethdr methods.
$a->gethdr returns either a hash ref (which could be a tied object such as a FITS header object) or
the undefined value. $a->sethdr($hdr) accepts either a hash ref or the undefined value, and
assigns it to the pdl's header.

hdr_copy - return a deep copy of a PDL's header

The gethdr method makes a shallow copy of the PDL's header - it returns a ref that points to the
original header data. If instead you want a complete, deep copy (that you can modify without affecting
the original PDL) you want hdr_copy instead.

hdrcpy - control header copying

The PDL Book

Page 31

If you apply an operator to a PDL with a header set, you can arrange to have the header copied to the
result PDL. The underlying hash or object is deep-copied, which is somewhat expensive; so you must
set a flag on the source PDL to make it happen. $a->hdrcpy() returns the state of the copying flag;
$a->hdrcpy($flag) sets it. False values (the default) turn the feature off, true values turn it on.

Slicing, Dicing and Threading dims with PDL
Fundamental to any vectorized data language such as PDL is the ability
 to manipulate subsets of data
in convenient ways. PDL provides the
 facilities to change the size and dimensionality of data, to take

contiguous and non-contiguous subsections of data along dimensions and
 to take completely arbitrary
subsets of data meeting arbitrary criteria.

A key powerful feature is the ability to manipulate these subsets of
 data, and if desired to propagate
these changes back to the original
 data automatically. This includes passing data to user-written

subroutines, which may call standard external C code, which do not know
 or care about whether the
data is a subset or not.

That sounds pretty abstract - but here is a concrete example: with PDL
 one could for example select
all the pixels in an image greater than a
 certain value or meeting some other condition. This might
serve to
 isolate a bright star or galaxy. One could then pass the pixel values
 and their locations to a
photometry subroutine (which is just written to
 work on data arrays not caring whether it is a subset or
not) which
 would fit the pixels with some model and replace them in the array.
 These changed pixels
would then be automatically changed in the original
 image.

This sort of abstraction is extremely powerful as it allows for very
 concise and clear code. We'll start
by looking at the simplest
 operations to extract simple slices of piddles, and look at increasingly
 more
complex kinds of slices.

Finding piddle dimensions.
PDL data arrays can take arbitrary sizes and dimensions. Finding the
 current dimensions is
straight-forward with the dims function which
 returns a list:

 $data = zeroes(100,20,3);
 print dims($data);
 ($nx, $ny, $nz) = dims($data);

See also the shape function which returns the pdl shape as
 a pdl:

 $datashape = shape($data);

The number of elements in a piddle is equally easy:

 print nelem($data);

The slice function - regular subsets along axes
Earlier we saw how to extract a rectangular subset of a
 piddle:

 $section = $gal(337:357,178:198);

The piddle $gal was a 2D image, we used array syntax (compliments
 of PDL::NiceSlice) to
extract a contiguous subset ranging from
 pixel 337 to 357 along the first dimension, and 178 through
198 along
 the second. Behind the scenes, this is implemented by the slice
 function.

 $section = $gal->slice('337:357,178:198');

Use the on-line documentation:

The PDL Book

Page 32

 pdl> help slice

to explore the full set of options. slice is probably the most
 frequently used PDL function so we will
explore it in some detail.
 But first we notice that slice is implemented via a named function.

Through the magic of PDL::NiceSlice and source filtering you can
 access slice functionality in a
form very similar to the vector
 array syntax found in many array computation languages such as

FORTRAN-90 and MATLAB. The chief difference being that the argument
 to the slice method call
is a string describing the elements
 to be selected. For the new PDL::NiceSlice syntax, you don't
use
 the method or function call and the argument does not need to be
 wrapped up in a string.

In this chapter, we will usually show the PDL::NiceSlice syntax
 but refer to the operation as a slice
even though with the new
 syntax there is no longer an explicit slice method being called.

The basic slicing specification.

The slicing argument syntax is just a list of ranges, the simplest
 if of the form A:B to specify the start
and end pixels. This
 generalizes to arbitrary dimensions;

 $data = zeroes(1000);
 $sec = $data(0:20);
 $data = zeroes(100,100,20);
 $sec = $data(0:20,40:60,1:3);

Note that PDL, just like Perl and C, uses ZERO OFFSET arrays. i.e.
 the first element is numbered 0,
not 1. Just like Perl you can use -N to refer to the last elements:

 $data = zeroes(1000);
 $sec = $data(-10:-1); # Elements 990 to 999 (last)

One can also specify a step in the slice using the form A:B:C where C is the step. Here is an
example:

 pdl> $x = sequence(24); # Create a piddle of increasing value
 pdl> print $x
 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
 pdl> print $x(16:22:2)
 [16 18 20 22]

Quite often one wants all the elements along many of the dimensions, one
 can just use ":" or just
omit the specifier altogether:

 pdl> $a = zeroes(10,20,3)
 pdl> print dims $a(:,5:10,:)
 10 6 3
 pdl> print dims $a(,5:10,)
 10 6 3

Omitting the range allows specification of just one index along the dimension:

 $z = zeroes 100,200;
 $col = $z(42,:); # Column 42 (Dims = 1x200)
 $row = $z(:,42); # Row 42 (Dims = 100x1)

You also can use perl scalars to construct the slicing specifications:

The PDL Book

Page 33

 $x1 = 2; $x2 = 42;
 $sec = $data($x1:$x2);

Modifying slices.

Here's the biggy:

 pdl> $x = sequence(24);
 pdl> print $x;
 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
 pdl> $slice = $x(4:20:2);
 pdl> print $slice;
 [4 6 8 10 12 14 16 18 20]

All very well. But now we modify the slice using the assignment operator.

 pdl> $slice .= 0;
 pdl> print $slice;
 [0 0 0 0 0 0 0 0 0]
 pdl> print $x;
 [0 1 2 3 0 5 0 7 0 9 0 11 0 13 0 15 0 17 0 19 0 21 22 23 24]

Modifying the slice automatically modifies the original data! However it
 is done ($slice++ etc. work
just as well).

All the PDL slicing and dicing functions work this way, from the
 simplest rectangular slices to the most
complex conditional slices.
 This is because they use a fundamental PDL feature known as dataflow.

Does a slice consume memory?

What if we have a big array and make a slice of most of it:

 $x = zeroes (2000,2000);
 $slice = $x(10:1990,10:1990);
 $slice++;

If you monitor the memory consumed by the PDL process on your computer
 (UNIX/Linux users can
try the top command) you will see that the
 amount of memory consumed does not go up - even
when the slice is
 modified . This is because the way PDL is written allows many of the
 simple
operations on slices to be optimized - i.e. a temporary internal
 copy of the slice need not be made. Of
course sometimes - for example
 when passing to an external subroutine - this optimization is not

possible. But the book-keeping of propagating the changes back to the
 original piddle is handled
automatically.

Advanced slice syntax

slice has some advanced syntactical features which allow dimensions
 to be inserted or removed
(this comes in quite useful when passing 2D
 arrays to functions expecting 1D arguments and vice
versa, this comes in
 extremely useful when using PDL's advanced threading features (see PDL
threading and the signature later.

If a dimension is of size unity it can be removed using ():

 $z = zeroes 100,30;
 $col = $z(42,:); # Column 42 - 2D (Dims = 1x30)
 $col = $z((42),:); # Column 42 - 1D (Dims = 30)

And then one can put them back again using "*":

The PDL Book

Page 34

 $col2 = $col(*,:,*); # Dims now = 1x30x1

This can even be used to insert more than one element along the dimension:

 $t = $z(:,*3,:); # Dims now 100x3x30

This sort of thing is very useful for advanced threading trickery.

PDL's Method notation

At this point we would like to introduce the varied notations for
 calling slice and it's friends. This is
because it will be
 commonly seen in PDL code and is very handy. While at first unfamiliar
 to C and
FORTRAN users it is not rocket science, PDL users will quickly
 become used to it.

As we mentioned in Chapter 2 piddles are implemented as Perl objects.
 Objects can have their own
personal functions, known as methods. The
 difference between a method and a function is that a
method can only be
 used on the class of object it belongs too. And methods have a new
 notation for
calling them. This means names (which can get in short
 supply) can be re-used for different objects.

Many of PDL's functions are available as methods too, in fact once you
 started using the more
advanced features you will find that many of them
 are only available as methods. (PDL by default
defines a lot of
 functions, which while useful do clutter Perl's namespace, at some point
 we had to
stop!).

For example here are 3 different ways of calling slice:

 $t = slice($z,":,*3,:"); # Function call (old style)
 $t = slice $z,":,*3,:"; # Function call (old style)
 $t = $z->slice(":,*3,:"); # Method call (old style)
 $t = $z(:,*3,:); # Vector syntax (NiceSlice style)
 $t = $z->(:,*3,:); # Method call (NiceSlice style)

The PDL::NiceSlice style vector syntax is the most concise and
 readable. The method call syntax
(either old style or PDL::NiceSlice
 style) is also readable. You may need to understand the
original
 slicing syntax to understand legacy PDL codes and for the cases where PDL::NiceSlice
syntax can not or is not used. See the on-line docs
 for PDL::NiceSlice for details.

The dice and dice_axis functions - irregular subsets along axes
As well as take regular slices along axes via the slice function,
 another common requirement is to
take irregular slices, by which
 we mean a list of arbitrary coordinates. This operation is referred to
 in
PDL as dicing a piddle.

The dice_axis function performs a dice along a specified axis:

 $a = sequence(10,20);
 $b = dice_axis $a, 0, [3,7,9]; # Dice along axis 0
 $b .= 42; # Alters columns [3,7,9];
 print $b;

For a 2D piddle dicing along axis 0 selects columns, dicing along axis 1
 selects rows. In general in
N-dimensions dicing along a given axis
 reduces the number of elements along that axis, but the
number of
 dimensions remains unchanged. The dice function allows all axes to
 be specified at once:

 $z = zeroes 10,20,50;
 print dims dice $z,[2,3,5],[10,11,12],[30..35,39,40];

The list of axes in the dice can be specified using Perl's "[]"
 list reference notation or using a 1D

The PDL Book

Page 35

piddle: $z = sequence 10,20;
 $dice = long(random(10)*10); # Select random columns
 $sel = $z->dice_axis(0,$dice);

Using mv, xchg and reorder - transposing dimensions
We saw earlier how arguments to slice can be used to add and remove
 dimensions. More
sophisticated tricks can be performed with a whole
 suite of PDL methods.

xchg simply swaps two dimensions:

 $z = zeroes(3,4);
 $t = $z->xchg(0,1); # Axes 0 and 1 swapped, dims now = 4,3

This is a simple matrix transpose. The method <$z-transpose>> and
 the equivalent operator ~$z
also do this, though they
 also make a copy (i.e. return a new piddle) not a slice and can operate
 on
1D piddles (i.e. convert a row vector into a column vector).
 Sometimes this is what you want. xchg
works like slice and dice - changes affect the original. Also xchg generalizes to
 N-dimensions:

 $z = zeroes(3,4,5,6,7);
 $t = $z->xchg(1,3); # Dims now 3,6,5,4,7

A different way of switching dimensions around is provided by $z-mv(A,B)>
 which just moves the
axis A to position B :

 $z = zeroes(3,4,5,6,7);
 $t = $z->mv(1,3); # Dims now 3,5,6,4,7

Finally one can completely re-order dimensions:

 $z = zeroes(3,4,5,6,7);
 $t = $z->reorder(4,3,0,2,1); # Dims now 7,6,3,5,4

Note reorder is our first example of a pure PDL method - it does
 not exist as a function and can only
be called using the <$z-reorder(...)>> syntax.

Combining dimensions with clump
We've now seen a whole slew of functions for changing the ordering of
 dimensions. It is now time to
look at some more complicated operations.
 The first of these is something we have already seen in
Chapter 1. This
 is the clump function for combining dimensions together. Suppose
 we have a 3-D
datacube piddle:

 pdl> $a = xvals(5,3,2);
 pdl> print $a;

 [
 [
 [0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]
]
 [
 [0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]

The PDL Book

Page 36

]
]

We have seen before we can apply a 1-D function like sumover to the
 rows - and using dimension
manipulating functions to any of the axes.

But say we wanted to sum over the first TWO dimensions? i.e. replace
 our datacube with a 1-D vector
containing the sums of each plane. What
 we need to do is to "clump" the first two dimensions together
to make
 one dimension, and then use sumover. Surprisingly enough this is
 what clump does:

 pdl> $b = $a->clump(2); # Clump first two dimensions together
 pdl> print $b;
 [
 [0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
 [0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
]
 pdl> $c = sumover $b;
 pdl> print $c;
 [30 30]

Now we know about mv it is also easy to sum over the last two dimensions:

 pdl> print sumover $a->mv(0,2)->clump(2)
 [0 6 12 18 24]

It is also possible using the special form clump(-1) to clump all
 the dimensions together:

 pdl> $x = sequence(10,20,30,40);
 pdl> print dims $x->clump(-1);
 240000
 pdl> print sumover $x->clump(-1); # Same as sum($x)
 28799880000

Uncannily this is almost exactly how the sum function is implemented in PDL.

Adding dimensions with dummy
After our first look at threading in Chapter 2 we know how to add a
 vector to rows of an image:

 pdl> print $a = pdl([1,0,0],[1,1,0],[1,1,1]);
 [
 [1 0 0]
 [1 1 0]
 [1 1 1]
]
 pdl> print $b = pdl(1,2,3);
 [1 2 3]
 pdl> print $a+$b;
 [
 [2 2 3]
 [2 3 3]
 [2 3 4]
]

But say we wanted to add the vector to the columns. You might think to
 transpose $a :

The PDL Book

Page 37

 pdl> print $a->xchg(0,1)+$b;
 [
 [2 3 4]
 [1 3 4]
 [1 2 4]
]

But the result is the transpose of the desired result. We could of
 course just transpose the result but a
cleaner method is to use dummy
 to change the dimensions of $b :

 pdl> print $b->dummy(0); # Result has dims 1x3
 [
 [1]
 [2]
 [3]
]

dummy just inserts a "dummy dimension" of size unity at the
 specified place. dummy(0) put's it at
position 0 - i.e. the first
 dimension. The result is a column vector. Then we easily get what we
 want:

 pdl> print $a + $b->dummy(0);
 [
 [2 1 1]
 [3 3 2]
 [4 4 4]
]

Because of the threading rules the unit dimension makes $b
 implicitly repeat along axis 0. i.e. it is as
if <$b-dummy(0)>> looked like:

 [
 [1 1 1]
 [2 2 2]
 [3 3 3]
]

dummy can also be used to insert a dimension of size >1 with the
 data explicitly repeating:

 pdl> print dims $b->dummy(0,10);
 10 3
 pdl> print $b->dummy(0,10);
 [
 [1 1 1 1 1 1 1 1 1 1]
 [2 2 2 2 2 2 2 2 2 2]
 [3 3 3 3 3 3 3 3 3 3]
]

Completely general subsets of data with index , which
 and where
Our look at advanced slicing concludes with a look at completely general
 subsets, specified using
arbitrary conditions.

Let's make a piddle of real numbers from 0 to 1:

 pdl> print $a = sequence(10)/10;
 [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

The PDL Book

Page 38

We can make a conditional array whose values are 1 where a condition is
 true using standard PDL
operators. For example for numbers below 0.2
 and above 0.9:

 pdl> print $a<0.25 | $a>0.85;
 [1 1 1 0 0 0 0 0 0 1]

We'll use this as an example of an arbitrary condition. Using which
 we can return a piddle containing
the positions of the elements which
 match the condition:

 pdl> $idx = which($a<0.25 | $a>0.85); print $idx;
 [0 1 2 9]

i.e. elements 0..2 and 9 in the original piddle are the ones we want.
 We can select these using the
index function:

 pdl> print $a->index($idx);
 [0 0.1 0.2 0.9]

So here we have an arbitrary, non-contiguous slice. However thanks to
 the magic of PDL we can still
modify this as if it was still a more
 boring kind of slice and have our results affect the original:

 pdl> $a->index($idx) .= 0; # Set indexed values to zero
 pdl> print $a;
 [0 0 0 0.3 0.4 0.5 0.6 0.7 0.8 0]

In fact PDL possesses a convenience function called where which
 actually lets you combine these
steps at once:

 $a = sequence(10)/10;
 $a->where($a<0.25 | $a>0.85) .= 0;
 print $a; # Same result as above

i.e. we make a subset of values where a certain condition is true.
 You can of course use index with
explicit values:

 # Increment first and last values

 $a = sequence(10);
 $a->index(pdl(0,9))++;

What if you had a 2-D array? index is obviously one-dimensional.
 What happens is an implicit
clump(-1) (i.e. the whole array is
 viewed as 1-D):

 pdl> $a = sequence(10,2);
 pdl> $a->index(pdl(0,9)) .= 999;
 pdl> print $a;
 [
 [999 1 2 3 4 5 6 7 8 9]
 [10 11 12 13 14 15 16 17 18 999]
]

You can of course use where too for any number of dimensions:

 # e.g. make a cube with a sphere of 1's in the middle:
 $cube = rvals(100,100,100);

The PDL Book

Page 39

 $tmp = $cube->where($cube<20);
 $cube .= 0;
 $tmp .= 1;

PDL threading and signatures
Slicing and indexing arbitrary subsets of data is certainly a
 fundamental aspect of any array
processing language and PDL is no
 exception (as you can tell from the preceding examples). In PDL
those
 functions might be even more important since they are absolutely vital
 in using PDL threading ,
the fast (and automagic) vectorized
 iteration of "elementary operations" over arbitrary slices of

multidimensional data. First we have to explain what we mean by threading
 in the context of PDL,
especially since the term threading
 already has a distinct meaning in computer science that only

partly agrees with its usage within PDL. In the following we will
 explain the general use of PDL
threading and highlight the close
 interplay with those slicing and dicing routines that you have just

become familiar with (slice, xchg, mv, etc). But
 first things first: what is PDL threading?

Threading

Threading already has been working under the hood in many examples
 we have encountered in
previous sections. It allows for fast processing
 of large amounts of data in a scripting language (such
as perl).
 And just to be sure, PDL Threading is not the same as threading
 in the computer science
sense or in the perl sense. Both concepts
 are related but more about that later.

A simple example

As a starting point, we look at one of the PDL projection operators
 (they make N-1 dimensional
piddles from N dim input piddles). So we
 need some data to try our code on. This time, we use the
image of a
 tiny fluorescent bead that was recorded with a fluorescent microscope:

 use PDL::IO::Pic;
 $im = rpic 'beads.jpg'; # image stored in the JPEG format

The following code snippet calculates the maxima of all rows of this image $im :

 $max = $im->maximum;

We rewrite this example slightly so that we can see the dimensions of
 the piddles involved using a
little helper routine (see box) to print
 out the shape of piddles in the course of computations:

 ($max = $im->pdim('Input')->maximum)->pdim('Result');

that generates the following output:

 Input Byte D [256,256]
 Result Byte D [256]

 Since is important to keep track of the dimensions
 of piddles when using (and especially when
 introducing) B<PDL threading> we quickly define a
 shorthand command (a method) that lets us print
 the dimensions of piddles nicely formatted as
 needed:

 { package PDL;
 sub pdim {
 # pretty print type+dimensions and
 # allow for optional string arg

The PDL Book

Page 40

 my ($this) = @_;
 print (($#_ > 0 ? "$_[1]\t" : "") .
 $this->info("%T %D\n")); # use info to print type and dims
 return $this;
 }
 }

Two observations: note how we temporarily switched into the package PDL
 so that pdim can be used
as a method on piddles and we made the function
 return the piddle argument so that it can be
seamlessly integrated into
 method invocation chains:

 $a->pdim("Dims")->maximum;

A small utility routine

So let's dissect what has happened. If you look at the documentation of maximum it says This function
reduces the dimensionality of a
 piddle by one by taking the maximum along the 1st dimension.

In this respect maximum behaves quite differently from max. max will always return a scalar with a
value equal to that of the
 largest element of a (possibly multidimensional) piddle. maximum,
 however,
is by definition an operation that takes the maximum only over
 a one-dimensional vector. If the input
piddle is of higher dimension
 this elementary operation is automatically iterated over all

one-dimensional subslices of the input piddle

And, most importantly, this automatic iteration (we call it the threadloop) is implemented as fast
optimized C loops. As a
 convention, these subslices are by default taken along the first
 dimensions of
the input piddle. In our current example the subslices
 are one-dimensional and therefore taken along
the first dimension. All
 results are placed in an appropriately sized output piddle of N-1
 dimensions,
one value for each subslice on which the operation was
 performed.

Now it should be no surprise that

 pdl> $im3d = sequence short, 5,10,3; # a 3D image (volume)
 pdl> $max = $im3d->pdim('Input')->maximum;
 pdl> print $max->pdim('Result') . " \n"; generates

 Input Short D [5,10,3]
 Result Short D [10,3]
 [
 [4 9 14 19 24 29 34 39 44 49]
 [54 59 64 69 74 79 84 89 94 99]
 [104 109 114 119 124 129 134 139 144 149]
]

As expected the above command sequence creates a 2D piddle (size [10,3]) of maxima of all rows
of the original volume data.

Why bother?

Why should we go through this at length? Quickly you will realize that
 many more complicated
operations can be assembled from the iteration of
 an elementary operation (that is if you keep reading
this chapter).
 Those elementary operations that ship with the basic PDL distribution
 make the building
blocks for your more complicated real world
 applications; threading just makes sure it will all happen
quickly
 enough and without too much syntactical effort from your side (you still
 will have to get your
head round the idea). So let's expand our example
 a little further and postpone the why and how for a
small while.

The PDL Book

Page 41

More examples

Now suppose we do not want to calculate the maxima along the first
 dimension but rather along the
second (the column maxima). However, we
 just heard that maximum works by definition on the first
dimension.
 How can we make it do the same thing on the second dimension? Here is
 where the
dimension manipulation routines come in handy: we use a to
 make a piddle in which the original
second dimension has been moved to
 first place. Guess how that is done: yes, using xchg we get
what
 we want:

 pdl> $im3d = sequence short, 5,10,3; # a 3D image (volume)
 pdl> $max = $im3d->xchg(0,1)->pdim('Input')->maximum;
 pdl> print $max->pdim('Result') . " \n";

generates

 Input Short D [5,10,3]
 Result Short D [5,3]
 [
 [45 46 47 48 49]
 [95 96 97 98 99]
 [145 146 147 148 149]
]

If you check pdim's output you see how the originally second
 dimension of size 10 has been moved
to the first dimension (step 1->2)
 and, accordingly, maximum now does its work on all the columns of
the
 original input piddle $im3d (step 3).

Again PDL has automatically iterated the elementary functionality of
 maximum (calculate the
maximum of a one-dimensional vector) over all
 subslices of the data and created an appropriately
sized piddle (here of
 shape [5,3]) to hold the resulting elements.

This general scheme works for most PDL functions. For example, let's
 say you have a stack of
images (represented by a 3D piddle) and you want
 to convolve each image with the same kernel.
That's easy. Make sure
 the image dimensions (x and y) are the leading dimension in your piddle:

 $convolved = $stack->conv2d($kernel);

And if your image stack is organized differently, e.g. the leading
 dimension is the z dimension, say in
a [8,256,256] shaped piddle just
 use mv to obtain the desired result:

 $convolved = $stack->mv(0,2)->conv2d($kernel);

These (admittedly simple) examples show the general principle: an
 elementary operation is iterated
over subslices of one or several
 multidimensional piddles. Sometimes the dimensions of the input
piddles
 involved need to be manipulated so that iteration happens as desired
 (e.g. over the intended
subslices) and the result has the intended
 dimensionality. Formulating your problem at hand in a way
that makes
 use of threading rather than resorting to nested for-loops at the
 perl level can make the
difference between a script that is executed
 faster than you can type and one that is crawling along
and giving you
 plenty of time to have your long overdue lunch break.

Why threading and why call it threading ?

So what are the advantages of relying on threading to perform things you
 can achieve in perl also with
explicit for-loops and the slice
 command? There are several (very good) reasons. The more you
use PDL
 for your daily work the quicker you will appreciate this.

Before we get into the details of the why and how let's admit: PDL is by
 no means the first data

The PDL Book

Page 42

language that supports this type of automatic
 implicit looping facility: the authors have in fact been
inspired by
 several previous data language implementations, most notably Yorick

Similar concepts are also implemented in APL and J, although well hidden
 by a wealth of terminology
and notation very different from that of most
 other conventional computer languages . What we think
distinguishes PDL
 from these previous languages is the consistent support of threading
 throughout
PDL, the tight integration with the PDL preprocessor (dealt
 with in a separate chapter) and the
conceptual interplay with the
 dimension manipulation routines.

The first and most important reason to use PDL threading is simply speed . The alternative to
threading are loops at the perl level.
 That is certainly a viable alternative, however, if we rewrite our

maximum routine along these lines a quick benchmark test will prove our
 point. First of all, here is the
code that does the equivalent of maximum
 on 2D input without using threading

 sub mymax {
 # we only cover the case of 2D input
 my ($pdl) = @_;
 die "can only deal with 2D input" unless $pdl->getndims == 2;
 $result = PDL->zeroes($pdl->type,$pdl->getdim(1));
 my $tmp;
 for (my $i=0;$i<$pdl->getdim(1);$i++) {
 ($tmp = $result->slice("($i)")) .= $pdl->slice(",($i)")->max;
 }
 return $result;
 }

We have written it so that mymax can just deal with 2D input
 piddles. A routine for the general
n-dimensional case would have been
 more involved . Note that we explicitly have to create an output
piddle
 of the desired type and size. By comparison, the corresponding
 threading routine is much more
concise:

 sub mythreadmax {
 my ($pdl) = @_;
 return $pdl->maximum;
 }

In fact, we only wrapped maximum in another subroutine to have the
 same calling overhead as mymax
. We are trying to be fair (even
 though we are biased). So let's compare the performance of mymax

versus mythreadmax . How? Remember that we are using perl, after
 all, and that there is (almost)
always a module that does just what you
 need. Here and now, that would be Benchmark.

Our benchmarking script looks like this

 use Benchmark;
 use PDL;
 $a = sequence(10,300);
 timethese(0, { # run each for at least 3 CPU secs
 'Perl loops' => '$pl = mymax $a;',
 'PDL thread' => '$pt = mythreadmax $a;',
 });

If we run this script it generates

 PDL thread: 4 wclk secs (2.48 usr + 0.64 sys = 3.12 CPU) @ 12802.88/s
(n=40009)
 Perl loops: 3 wclk secs (1.80 usr + 1.23 sys = 3.03 CPU) @ 12.86/s

The PDL Book

Page 43

(n=39)That proves our point: while the example using threading is executed at
 a rate of nearly
13,000 per second using explicit loops has brought down
 the speed to less than 13/second, a very
significant difference.

Obviously, the difference between threading and explicit looping depends somewhat
 on the nature of
the elementary operation and the piddles in question.
 The difference becomes most striking the more
elementary operations are
 involved and the faster an individual elementary operation can be

performed. The advantage of threading will level off as the time for
 performing the elementary
operation becomes comparable or even greater
 than that required to execute the explicit looping
code.

Another distinct advantage becomes apparent when comparing the code
 required to implement the
equivalent of the maximum functionality
 explicitly in perl code. We have to write extra code to create
the
 right size output piddle, explicitly handle dimension sizes, etc. All in
 all the code is much less
concise and also less general.

With the requirement to deal with all dimensions, loop limits, etc
 yourself you increase the probability
of introducing errors into your
 code. When using threading, PDL checks all dimensions for you, makes
sure it loops over the correct indices internally and keeps you from
 having to do the bookkeeping:
after all, that is what computers are good at.

Even though PDL threading makes your life much easier in one respect by
 taking care of some of the
"messy" details it leaves you with another
 task: you have to find the places in your algorithm/problem
where
 threading can effectively be used and help to make for speedy execution
 even when using an
(almost inevitably slower) scripting language. But
 finding such places and making use of these
vectorized features is the
 key to using an array-oriented high level language like PDL
 successfully.
This is what the programmer new to PDL and used to
 low-level programming has to learn: avoid
explicit loops where possible
 and try to use automatically performed thread loops instead.

There is yet another benefit that comes with the threading approach. By
 looking at places where
threading can be efficiently used you are also
 rethinking your problem in a way so that it can be very
effectively
 parallelized! The keen reader has probably already observed that those
 internal automatic
loops of elementary operations over subslices do not
 have to be performed sequentially. In fact, as of
PDL-2.4.10, there
 is a new capability where PDL now support automatic parallelization
 of the PDL
threadloops via POSIX threads:

 use Benchmark qw(:hireswallclock);
 use PDL;
 $a = zeros(2_000_000);
 $b = zeros(2_000_000);
 set_autopthread_size(0);

 set_autopthread_targ(10); # split across 10 threads
 timethese(20,{threaded => '$a **= 1.3'});

 set_autopthread_targ(0); # Set target to 0 for unthreaded
 timethese(20,{unthreaded => '$b **= 1.3'});

For a Vista/Cygwin system with a quad-core i5 processor we
 see an greater than 2.5X reduction in
wall clock time by using
 multiple processor cores. See documentation for PDL::ParallelCPU
 using
help PDL::ParallelCPU in one of the PDL shells, or with pdldoc PDL::ParallelCPU from the
command line.

The general case: PDL functions and their signature

Having made the case for PDL threading let's study its own messy
 details. PDL threading is a
powerful tool. And as usual you have to
 pay a price for power: complexity. The general rules for PDL

The PDL Book

Page 44

threading
 can be confusing at first. But there is hope: you can first study the
 more simple cases and
work up to more difficult examples as you go. So
 let's continue our tour of threading.

The first question arises naturally: how can one find out about the
 dimension of subslices in a
elementary operation of a function in PDL?
 We know from the preceding examples that some PDL
functions work on a
 one-dimensional subvector of the data and generate a zero-dimensional
 result (a
scalar) from each of the processed subslices, for example: maximum, minimum, sumover,
prodover, etc.
 Two-dimensional convolution (conv2d), on the other hand, consumes
 a 2D subslice
in an elementary operation. But how do we get this
 information in general for any given function? It is
easy: you just
 have to check the function's signature!

The signature is a string that contains this information in concise
 symbolic form: it names the
parameters of a function and the dimensions
 of these parameters in an elementary operation.
Additionally, it
 specifies which of these parameters are input parameters and which are
 output
parameters. Finally, for some functions it contains information
 about special type conversions that are
to be performed at run-time.

Generally, you can find the signature of a function using the perldl
 online help system. Just type sig
<funcname> at the command
 prompt, e.g.:

 pdl> sig maximum

 Signature: maximum(a(n); [o]c())

The interesting part is the formal argument list in parentheses that follows the function name:

 a(n); [o]c()

This signature states that maximum is a function with two arguments
 named a and c. Wait a minute:
above it seemed that maximum only
 takes one argument and returns a result! The apparent

contradiction is resolved by noting that the formal argument c is
 flagged with the [o] option
identifying c is an output
 argument. This seems to suggest that we could maximum also call as
maximum($im, $result);

This is in fact possible and an intended feature of PDL that is useful
 in tight loops where it helps to
avoid unnecessary reallocation of
 variables (see below). In general, however, we will call functions in

the usual way that can be written symbolically as:

 output_arg_list = function(input_arg_list)

or equivalently, using the method notation:

 output_arg_list = input_piddle_1->function(rest_of_arg_list)

The other important information supplied by the signature is the
 dimensionality of each of these
arguments in an elementary operation.
 Each formal parameter carries this information in a list of
formal
 dimension identifiers enclosed in parentheses. So indeed a(n)
 marks a as a one-dimensional
argument. Additionally, each
 dimension has a named size in a signature, in this example n . c() has
an empty list of dimension sizes: it is declared to be
 zero-dimensional (a scalar).

If piddles that are supplied as runtime arguments to a function have
 more dimensions than specified
for their respective formal arguments in
 the signature then these dimensions are treated by PDL as
extra dimensions
 and lead to the operation being threaded over the
 appropriate subslices, just what
we have seen in the simple examples
 above.

As mentioned before a higher dimensional piddle can be viewed as an
 array (again not in the perl

The PDL Book

Page 45

array sense) of lower dimensional
 subslices. Anybody who has ever worked with matrix algebra will
be
 familiar with the concept. For some of the following examples it will
 be useful to illustrate this
concept in somewhat more detail. Let's
 make a piddle first, a simple 3D piddle:

 $pdl = sequence(3,4,5);

A boring piddle, you say? Yes, boring, but simple enough to clearly see
 what is going on in the
following. First we look at it as a 3D array of
 0D subslices. Since we know the syntax of the slice
method already
 we can write down all 0D subslices, no problem:

 $pdl(($i),($j),($k));

Well, obviously we have not written down all 3*4*5 = 60 subslices
 literally but rather in a more concise
way. It is understood that $i
 can have any value between 0 and 2, $j between 0 and 3 and $k

between 0 and 4. To emphasize this we sometimes write

 $pdl(($i),($j),($k)) $i=0..2; $j=0..3; $k=0..4

With the meaning as above (and '..' not meaning the perl list
 operator). In that way we enumerate all
the subslices. Quite
 analogously, when dealing with an elementary operation that consumes 1D
 slices
we want to view $pdl as an [4,5] array of 1D subslices:

 $pdl(:,($i),($j)) $i=0..3; $j=0..4

And similarly, as a [5] array of 2D subslices:

 $pdl(:,:,($i)) $i=0..4

You see how we just insert a ":" for each complete dimension we include
 in the subslice. In fig. XXX
the situation is illustrated graphically
 for a 2D piddle. Depending on the dimensions involved in an
elementary
 operation we therefore often group the dimensions (what we call the shape)
 of a piddle in
a form that suggests the interpretation as an
 array of subslices. For example, given our 3D piddle
above that has a
 shape [3,4,5] we have the following different
 interpretations:

 ()[3,4,5] a shape [3,4,5] array of 0D slices
 (3)[4,5] a shape [4,5] array of 1D slices (of shape [3])
 (3,4)[5] a shape [5] array of 2D slices (of shape [3,4])
 (3,4,5)[] a 0D array of 3D slices (of shape [3,4,5])

The dimensions in parentheses suggest that these are used in the
 elementary operation (mimicking
the signature syntax); in the context of
 threading we call these the elementary dimensions . The
following
 group of dimensions in rectangular brackets are the extra dimensions.
 Conversely, given
the elementary/extra dims notation we can easily
 obtain the shape of the underlying piddle by
appending the extradims to
 the elementary dims. For example, a [3,6,1] array of 2D
 subslices of
shape [3,4]:

 (3,4)[3,6,1]

identifies our piddle's shape as [3,4,3,6,1]

Alright, the principles are simple. But nothing is better than a few
 examples. Again a typical imaging
processing task is our starting
 point. We want to convert a colour image to grayscale. The input image
is represented as a two-dimensional array of triples of RGB colour
 coordinates, or in other words, a
piddle of shape [3,n,m] .
 Without delving too deeply into the details of digital colour
 representation it
suffices to note that commonly a gray value i
 corresponding to a colour represented by a triple of red,

The PDL Book

Page 46

green and blue
 intensities (r,g,b) is obtained as a weighted sum:

 77 150 29
 i = --- r + --- g + --- b
 256 256 256

A straight forward way to compute this weighted sum in PDL uses the inner
 function. This function
implements the well-known inner product
 between two vectors. In a elementary operation inner

computes the sum of the element-by-element product of two
 one-dimensional subslices (vectors) of
equal length:

 __ n-1
 c = \ a b
 /__ i=0 i i

Now you should already be able to guess inner's signature:

 pdl> sig inner

 Signature: inner(a(n); b(n); [o]c())

a(n); b(n); [o]c(); : two one-dimensional input parameters a(n) and b(n) and a scalar
output parameter c() . Since a
 and b both have the same named dimension size n the

corresponding dimension sizes of the actual arguments will have to match
 at runtime (which will be
checked by PDL!). We demonstrate the
 computation starting with a colour triple that produces a sort
of
 yellow/orange on an RGB display:

 $yel = byte [255, 214, 0]; # a yellowish pixel
 $conv = float([77,150,29])/256; # conversion factor
 $i = inner($yel,$conv)->byte; # compute and convert to byte
 print "$i \backslash n";
 202

Now threading makes extending this example to a whole RGB image very straightforward:

 use PDL::IO::Pic; # IO for popular image formats
 $im = rpic 'pdllogo.jpg'; # a colour image from the book dataset
 $gray = inner($im->pdim('COLOR'),$conv);
 # threaded inner product over all pixels
 $gb = $gray->byte; # back to byte type
 COLOR Byte D [3,500,300]

The code needs no modification! Let us analyze what is going on. We
 know that $conv has just the
required number of dimensions (namely
 one of size 3). So this argument doesn't require PDL to
perform
 threading. However, the first argument $im has two extra dimensions
 (shape [500,300]).
In this case threading
 works (as you would probably expect) by iterating the inner product over
 the
combination of all 1D subslices of $im with the one and only
 subslice of $conv creating a resulting
piddle (the grayscale image)
 that is made up of all results of these elementary operations: a 500x300

array of scalars, or in other words, a 2D piddle of shape [500,300].

We can more concisely express what we have said in words above in our
 new way to split piddle
arguments in elementary dimensions and extra
 dimensions. At the top we write inner's signature
and at the
 bottom the slice expressions that show the subslices involved in
 each elementary
operation:

The PDL Book

Page 47

 Piddles $im $conv $gray
 Signature a(n); b(n); [o]c()
 Dims (3)[500,300] (3)[] ()[500,300]
 Slices ":,($i),($j)" ":" "($i)($j)"

Remember that the slice notation at the bottom does not mean that you
 have to generate all these
slices yourself. It rather tells you which
 subslices are used in a elementary operation. It is a way to
keep track
 what is going on behind the scenes when PDL threading is at work.
 Threading makes it
possible that we can call the grayscale conversion
 with piddles representing just one RGB pixel
(shape [3]), a
 line of RGB pixels (shape [3,n]), RGB images (shape [3,m,n]),
 volumes of RGB
data (shape [3,m,n,o]), etc.
 All we have to do is wrap the code above into a small subroutine that

also does some type conversion to complete it:

 sub rgbtogr {
 my ($im) = @_;
 my $conv = float([77,150,29])/256; # conversion factor
 my $gray = inner $im, $conv;
 return $gray->convert($im->type); # convert to original type
 }

You can write your own threading routines

Did you notice? By writing this little routine we have created a new
 function with its own signature that
will thread as appropriate. It has inherited the ability to thread from inner. So what is the
 signature
of rgbtogr? It is nowhere written explicitly and we can't
 use the sig function to find out about it

sig will only know about functions that were created using PDL::PP or if we explicitly specified the
signature in the PDL
 documentation but from the properties of inner and the definition
 of rgbtogr
we can work it out. As input it takes piddles with a
 size of the first dimension of 3 and returns for each
of the 1D
 subslices a 0D result (the gray value). In other words, the signature is

 a(tri = 3); [o] b()

There is some new syntax in this signature that we haven't seen before:
 writing tri=3 signifies that in
a elementary operation rgbtogr
 will work on 1D subslices (we have encountered this before);

additionally, the size of the first dimension (named suggestively tri) must be three. You get the idea.
What we have just seen is worth keeping in mind! By using PDL functions
 in our own subroutines we
can make new functions with the ability to
 thread over subslices. Obviously, this is useful. We will
come back to
 this feature when we talk about other ways of defining threading
 functions using
PDL::PP below.

Matching threading dimensions

After this small digression, back to the subject at hand: what happens
 when both piddle arguments
have extra dimensions? Well, the extra
 dimensions have to match. Otherwise we wouldn't know how
to sensibly
 pair the subslices, right? So when do extra dimensions match? It is
 quite simple:
corresponding extra dimensions have to have the same size
 in both piddle arguments. Corresponding
extra dimensions are those that
 occur in both piddles. However, one piddle can have more extra

dimensions than the other without causing a mismatch. That sounds
 strange? Ok, here is an
example. We use one of the fundamental
 arithmetic operations in PDL, addition implemented by the "
+"
 operator. You know already that in an array-oriented language like PDL
 addition is performed
element-by-element on scalars. So the signature
 of "+" comes as no surprise

 a(); b(); [o] c()

two scalars are summed to yield a scalar result. And when we use higher
 dimensional piddles in an

The PDL Book

Page 48

addition this elementary operation is
 performed over all 0D subslices, as before. So let's go through a
few
 cases. First make some simple piddles

 $a = pdl [1,2,3];
 $b = pdl [1,1,1];
 $c = ones 3,2;
 $d = pdl [3,4];
 print $a + $b, "\n";

No big deal. extradims for both piddles have shape [3]
 obviously matching, resulting in

 [2 3 4]

Next,

 print $a + $c;
 [
 [2 3 4]
 [2 3 4]
]

Alright, this probably is exactly what you expected but let us go
 through our new terminology and
check that we can formally agree with
 what we intuitively expected anyway.

$a's extradim (s) has shape [3] , those of $c shape [3,2].
 The corresponding extradim(s) in this
case is
 just the first one for the piddles involved. It is equal
 to 3 in both input piddles, so clearly
matches.

 $a $c
 a(); b(); [o] c()
 ()[3] ()[3,2] ?????

Now, here is something we have not explicitly discussed yet: what is the
 shape of the automatically
created output piddle given the shape of the
 extradims of the input piddles involved? Well, the result
is created so
 that it has as many extradims as that input piddle(s) with the
 most extradims.
Additionally, the shape will match that of the input
 piddles. In our current example that leaves us with
a result with
 extradim shape [3,2]: [o] c() ()[3,2]. Remembering that we
 obtain the shape of
the output piddle by appending the shapes of the
 extradims to that of the elementary dimensions
(here a scalar, i.e. 0D)
 that leaves us with a result piddle of shape [3,2].

In the next example we want to multiply $c with $d so that
 each row of $c is multiplied by the
corresponding element of $d
 or expressed in slices (with NiceSlice syntax):

 $result(($i),($j)) = $c(($i),($j)) * $d(($j)) $i=0..2, $j=0..1

How do we achieve that by threading?

 $result = $c*$d

is not the right way.

Why? Well, the extradims don't match, [3,2] does not match [2] since 2 is not equal to 3. Just to
see how PDL checks
 this let us actually execute the command. The slightly obscure error
 message is
something like this

 PDL: PDL::Ops::mult(a,b,c): Parameter 'b'

The PDL Book

Page 49

 PDL: Mismatched implicit thread dimension 0: should be 3, is 2
 Caught at file (eval 344), line 4, pkg main

This is PDL's way to tell you that the extra dimensions don't match.

So how do we do it? We use one of the dimension manipulation methods
 again. This time dummy
comes in handy. We want to multiply each
 element in the nth row of $c with the nth element of $d .
So
 we have to repeat each element of $d as many times as there are
 elements in each row of $c .
This is exactly what we can achieve
 by inserting a dummy dimension of size <$c-getdim(0)>> as
dimension
 0 of $d :

 pdl> print $d->dummy(0,$c->getdim(0))->pdim("New dims");
 New dims Double D [3,2]
 [
 [3 3 3]
 [4 4 4]
]

Using this trick we have a our threaded multiplication do what we want.
 And now the extra dimensions
match(!):

 $result = $c * $d->dummy(0,$c->getdim(0));
 print $result;

Using our symbolic way of writing down the slices that are paired in a
 elementary operation we can
see that we achieve what we wanted

 $c $d->dummy(0,$c->getdim(0)) $result
 "($i),(j)" "($i),($j)" "($i),($j)"

But hang on, we want to verify (somewhat formally) that the right
 subslices of the original $d are used
in each elementary operation.
 That is easily achieved by noting that the slice ($i),($j) of the

dummied $d is equivalent to the subslice ($j) of the original 1D
 piddle $d . So we finally arrive at

 $c $d $result
 "($i),(j)" "($j)" "($i),($j)"

While this kind of analysis seems probably not justified when dealing
 with such a simple example it
comes in very handy when looking at more
 complex threaded code.

But before we try our understanding on such an example we look once
 again at the way extra dims
have to match in a thread loop. In the
 previous example, we had to find out about the size of $c's first

dimension (using getdim(0)) to make a dummy dimension that would
 fit $c's extradims in the
threaded multiplication. Since similar
 situations occur very often when writing threaded PDL code the
matching
 rules for extra dimensions allow a dimension size of 1 to match any
 other dimension size: it
is the elastic dimension size in a sense
 that it grows in a thread loop as required. As in the thread
loop the
 corresponding extra dimension is marched through all its positions (e.g. slice(":,($i)")
 $i=0..n-1) the elastic dimension just uses its one
 and only position 0 repeatedly (
slice(":,(0)") $i=0..n-1).
 Therefore, an equivalent and more concise way to write the
threaded
 multiplications makes use of this and the fact that a dummy dimension
 of size 1 is created
by default if the second argument is omitted (see help dummy)

 print $c->pdim('c') * $d->dummy(0)->pdim('dd');
 $A [l,m] $B [n,l] $AB [n,m]
 $AB = inner $A->dummy(1), $B->xchg(0,1)

The PDL Book

Page 50

 $A->dummy(1) $B->xchg(0,1) $AB
 (l)[1,m] (l)[n] ()[n,m]
 ":,(0),($j)" ":,($i)" "($i)($j)"

Going back to the original piddles $A and $B we see that the slice
 expressions change to

 $A $B $AB
 ":,($j)" "($i),:" "($i),($j)"

and that means

 $AB(($i),($j)) = inner $A(:,($j)), $B(($i),:) $i=0..n-1, $j=0..m-1

and that is exactly the definition of the matrix product as we explained
 above! Our bit of formalism has
sort of "proved" it. You see that the
 slice and dimension matching formalism we developed can really
be
 helpful when you try to verify that your complicated threading
 expression does what you want it to
do. However, as you get more
 experience with threading we strongly suspect that you don't need this

any more; you will rather develop a much better "feeling" how to write
 down the right combination of
dimension manipulations to achieve the
 desired result in a thread loop.

Writing your own functions into PDL
Using PDL Functions

PDL shares the Perl method for building functions for code that perform
 a commonly repeated
function - you can define a function with sub, a
 function name, and a pair of curly braces.

Here's a simple function in a PDL script:

 #!/usr/bin/perl
 use PDL;
 $a = sequence(10);
 $b = $a * 4;

 $result = my_sums($a, $b);
 print $result;

 print my_sums(pdl(10,20,30), pdl(3,4,5));

 sub my_sums {
 my ($a1, $a2) = @_; # pdls passed in the perl array @_
 my $c = $a1 + $a2;
 my $difference = $a1 - $a2;
 return($c, $difference);
 }

As you can see, the function is called my_sums and it is defined at
 the end of this script, but you can
be define functions anywhere in the
 script. In the example above, we call my_sums twice, printing out

the answers as we go.

You can return as many PDLs from the function as you want, by passing
 them out in a comma
separated list.

You can define the functions in any part of your Perl script, even after
 the point in the program that
you started using the function. The input
 variables to the function are passed through the @_ array,
and we can
 put any set of piddles into the function. The function also has local
 scope, so variables

The PDL Book

Page 51

inside the routine are not seen by anything calling
 that function. Remember, though, that the variables
outside the
 function can be seen inside the function! It's good practice to have
 a use strict; inside
your functions whilst writing them, though, as
 this will help catch bugs.

Moving Functions into Separate Files
It gets tiring to copy and paste your useful functions from script to
 script, and so PDL provides a way
to have your functions stored in a
 file that can be read by many scripts.

Two important notes:

The filename has .pdl at its end, not .pl

The file has 1; as the last line outside the curly braces of the
 statement.

Use a file editor and cut and paste the text below into a file with the
 name my_sums.pdl.

 sub my_sums {
 ($a1, $a2) = @_;
 my $c = $a1 + $a2;
 my $difference = $a1 - $a2;
 return($c, $difference);
 }
 1;

Now create a separate script in the same directory:

 #!/usr/bin/perl
 use PDL;
 use PDL::AutoLoader;
 $a = sequence(10);
 $b = $a * 4;
 $result = my_sums($a, $b);
 print $result;
 print my_sums(pdl(10,20,30), pdl(3,4,5));

Running this Perl script will include PDL, and PDL will automatically
 look for a file called
my_sums.pdl (remember the extension has to
 have .pdl) and use it.

Getting PDL to look for your functions in other places
After a while, you will have many PDL functions scattered over many
 directories, and so it makes
sense to collect all your functions into a
 separate directory and have PDL look for them there.

You can set an environment variable in your shell called PDLLIB to
 look within a given directory. One
convention is to use PDLLIB=${HOME}/lib/pdl+ to store all your functions. When defined in
 your
system shell, this will inform PDL where you've put your commonly
 used functions. The directory path
is specified to your PDL library
 directory. The + sign at the end of the path tells PDL to also look
 in all
the subdirectories below the PDLLIB directory.

Documenting your Functions
Just like any other Perl script, you can add Plain Old Documentation
 (POD) inside your PDL
functions.

For a detailed look at what you can have in a POD, look at perlpod
 with perldoc perlpod or look
online for a tutorial.

At the bare minimum, the POD should say what the PDL function does, what
 are its inputs and
outputs. Further detail may include one or two
 examples so that a new user can test it and check they

The PDL Book

Page 52

understand what
 the function behaves, look at perlpod with perldoc perlpod or look
 online for a
tutorial.
 =for comment
 :!podchecker PGPLOT.pod && pod2html --infile=PGPLOT.pod
--outfile=PGPLOT.html
 open PGPLOT.html and click 'reload'
 also
 conversion for PDF reading is:

pod2pdf PGPLOT.pod --icon-scale 0.25 --title "PDL Book" --icon logo2.png --output-file PGPLOT.pdf

Plotting and Labeling Data and Images using PGPLOT
A central requirement of any data analysis package is the possibility of
 visualization of data. PDL
deals with this in a slightly different
 manner than some other packages in that no built-in graphics
library is
 used, instead it uses other freely available external packages. In this
 chapter we will focus
on the main 2D plotting package, PGPLOT.

Here we will cover the use of the PDL::Graphics::PGPLOT package which
 uses the freely
available PGPLOT subroutine package written by Tim
 Pearson. This is a very powerful package and
PDL::Graphics::PGPLOT
 does not provide easy access to everything in the PGPLOT package,

although it hopefully does most of what you will need.

For advanced use you might have to use some PGPLOT commands directly,
 see Using PGPLOT
commands directly for a discussion of this. But
 even if you don't you are recommended to at least
keep a copy of the
 PGPLOT documentation lying around. It is available from
http://www.astro.caltech.edu/~tjp/pgplot/.

The goals of this section is to familiarize the reader with the PDL
 interface to PGPLOT and show how
complicated datasets can be easily
 manipulated and displayed. The focus will be on interactive use to
facilitate learning, but at the end we will turn to an object-oriented
 interface that might be more suited
for scripts.

To use PDL::Graphics::PGPLOT it is necessary to have the PGPLOT
 package installed, and in
addition have the Perl PGPLOT module (written
 by Karl Glazebrook and available through CPAN)
installed and working. In
 the following we will assume that you have this all set up.

Introducing PDL::Graphics::PGPLOT
2-dimensional graphics in PDL is normally performed by the PDL::Graphics::PGPLOT module.
The PDL::Graphics::PGPLOT package
 must be use'ed to give access to the commands. This
introduction
 will be based on interactivity and use of perldl

 pdl> use PDL::Graphics::PGPLOT;

That is what you need to get running. We will now play around with a
 couple of commands before we
turn to a systematic overview in the next
 two sections. We will concentrate on the line and points
commands
 which draws continuous lines and individual plotting symbols
 respectively. The final result
should look similar to Figure 1.

The PDL Book

Page 53

The first step is to start perldl and use the PDL::Graphics::PGPLOT package (some output is
suppressed)

 > perldl
 Type 'help' for online help
 Type 'demo' for online demos
 Loaded PDL v2.4.3
 pdl> use PDL::Graphics::PGPLOT

Now we need to open a graphics device - there are quite a few that are
 supported by PGPLOT, here
we will use a normal plot window that can be
 re-used:

 pdl> dev('/xs')

You should now have a large plot window on your screen, if you had some
 problems try to do
dev('?') which will give you a list of available
 devices and allow you to choose one.

We first need to define a variable to have something to plot. The first
 plan is to simply plot a parabola
and a Gaussian (bell) function as in
 the left panel in Figure 1, so we need an x-variable that is both

positive and negative.

 pdl> $x=zeroes(100)->xlinvals(-5, 5)

This creates a 100 element piddle starting at -5 and ending at 5. We can
 then very easily draw a
parabola:

 pdl> line $x, $x*$x/12.5, {LINESTYLE=>'Dashed', Colour=>red}

The PDL Book

Page 54

which should draw a nice parabola with a dashed red line. As
 should be clear the line command
draws a line and takes the x and y
 coordinates of the points on the line as arguments and options to
the
 command are given as an anonymous hash.

We now want to plot a Gaussian on top of this, but if we were just to
 issue another plot command it
would by default erase the screen, so
 instead we call the hold function to stop that from happening:

 pdl> hold

We can then continue plotting, now using symbols instead of a line:

 pdl> points $x, exp(-$x*$x/2), {Symbol => 'Plus'};

Again, note that the function points function plots symbols instead
 of lines. PGPLOT has a large
array of symbols, normally accessed using
 numbers, but the most common have text aliases defined.

The only thing left for us now is to ensure that the next plot will
 start afresh. Since we issued the hold
command all subsequent plots
 will overplot the existing ones and since we do not want that anymore,

we therefore have to release the device to the next set of plot
 commands:

 pdl> release;

As a second example we will show how you can create plots with error
 bars. We will just carry on so
the previous plot will be erased (enjoy
 it while you can). We first have to define some variables for the
plot,
 so we need the x and y variables and the error on y.

 pdl> $x = pdl(0.88, 0.223, 0.815, 0.606, 0.188, 0.360)
 pdl> $y = pdl(24.52, 22.24, 25.43, 23.54, 22.63, 23.59)
 pdl> $dy = pdl(0.57, 0.07, 0.84, 0.27, 0.12, 0.28)

In the previous example we let PGPLOT decide on the plotting ranges we
 were going to use, but now
we want some more control over it. To do so
 we set it up using the env command:

 pdl> env(0, 1, 22, 26)

which sets the X-axis to go from 0 to 1 and the Y-axis from 22 to 26.

That is really all that is needed before plotting the error bars:

 pdl> errb $x, $v, $dv, {Symbol => 'Square'};

And here we go! It almost looks like science. Of course in real life
 error-bars might not be symmetric
(although you often wish they were),
 and we will explain how to do this later when we discuss errb in
more
 detail below.

An overview of 2D plotting commands
Before we proceed to an overview of all commands in PDL::Graphics::PGPLOT it is necessary to
define a couple of terms:
 The first is the concept of device - this is what the plotting
 commands work
on, often this will be a screen device which shows
 resulting output on the screen in a window, but it
can also be output to
 a file in some sort of format. Then inside each device there is a plotting area
within which plotting commands gives a noticeable
 result.

Another important concept is holding of plots. When a plot is held,
 any subsequent plot commands
will plot on top of the existing plot. To
 explicitly hold a plot you issue the command hold and to
release it
 again you use release.

The PDL Book

Page 55

Finally most commands described in the following take a set of options. These are values that can be
set to modify the default
 behavior of the plotting routine and are very useful so we will first
 discuss the
standard options and how options are specified.

Options in plot commands
As mentioned above and seen in the brief introduction to the PGPLOT
 interface earlier, we use
options to modify the behavior of plot
 commands. Below we will often see examples of specific
options, those
 that are only recognized by a particular plot command. However in
 addition there are
general options that are recognized by many or all
 plot commands. These are normally the options
you use most so it is
 important to know these.

But first, how do you specify an option? If you read through the
 walk-through above you have
probably already realized that they are set
 as keys in a hash:

 line x, y {Colour => 3}

However due to the way they are implemented in the code (using the PDL::Options package) the
hash is more flexible than normal Perl
 hashes. Firstly the options are case-insensitive and secondly
some have
 synonyms defined so that for instance Color and Colour are both
 accepted to avoid bad
feelings on one side of the Atlantic. Finally
 most, if not all, options can be shortened so that Lines
will be
 interpreted as LineStyle. This is mostly useful when working on the perldl command line
however as it is error-prone in scripts (imagine
 that someone later implemented a Lines option which
did something
 totally different, like draw 10 parallel lines, yeah, quite likely).

The following listing of standard options is based on the on-line
 documentation which you can access
yourself inside perldl as

 pdl> help PDL::Graphics::PGPLOT::Window

or using the pdldoc command

 bash$ pdldoc PDL::Graphics::PGPLOT::Window

It is not envisaged that the standard option set will be significantly
 expanded from that listed here, but
the on-line documentation should
 reflect any changes if they take place.

Arrow

This option allows you to set the
 arrow shape, and optionally size for arrows for the vect
routine. The
 arrow shape is specified as a hash with the key FS to set fill style,

Angle

sets the opening angle of the arrow head, Vent to set how
 much of the arrow head is cut out
and Size to set the arrowsize.

The following code:

 pdl> $opt = {Arrow => {FS=>1, Angle=>60, Vent=>0.3, Size=>5}};

will set up an options hash for a broad arrow of five times the normal
 size.

Alternatively the arrow can be specified as a set of numbers
 corresponding to an extension to
the syntax for the PGPLOT command pgsah . The equivalent to the above is

 pdl> $opt = {Arrow => pdl([1, 60, 0.3, 5])};

For the latter the arguments must be in the given order, and if any are
 not given the default
values of 1, 45, 0.3 and 1.0 respectively will be
 used.

The PDL Book

Page 56

Arrowsize

The arrowsize can be specified separately using this option
 to the options hash. It is useful if
an arrowstyle has been set up and
 one wants to plot the same arrow with several sizes.
Please note that it
 is not possible to set arrowsize and character size in the same call
 to a
plotting function. This should not be a problem in most cases.

 pdl> $opt = {ARROWSIZE => 2.5};

Axis

Set the axis type (see the env command below in Setting up the plot area). It can either be
specified as a
 number, or by a name as in the following table

 Name Number Explanation
 ---- ------ -----------

 Empty -2 draw no box, axes or labels
 Box -1 draw box only
 Normal 0 draw box and label it with coordinates
 Axes 1 same as Normal, but also draw X=0, Y=0 axes
 Grid 2 same as Axes, but also draw grid lines
 LogX 10 draw box and label X-axis logarithmically
 LogY 20 draw box and label Y-axis logarithmically
 LogXY 30 draw box and label both axes logarithmically

The reason why this command is accepted by most commands is that when a
 command is
called before a plot area is set up it will implicitly call env which interprets this option.

AxisColour

Set the axis colour using the same syntax as for the Colour option below.

Border

Normally the plot limits are chosen so that the plotted points just fit
 inside the plot area; with
this option you can increase (or decrease)
 the limits by either a relative (i.e. a fraction of the
original axis
 width) or an absolute amount. Either specify a hash array, where the
 keys are
Type (set to 'Relative ' or 'Absolute ') and Value
 (the amount to change the limits by), or
set to 1, which is equivalent
 to Border => { Type => 'Rel', Value => 0.05}.

Charsize

Set the character/symbol size as
 a multiple of the standard size. $opt = {Charsize =>
1.5}

Colour

Set the colour to be used for the subsequent plotting - it has Color as a synonym. This can
be specified as a number, and the most
 used colours can also be specified with name,
according to the following
 table:

 0 White 4 Blue 8 Orange
 1 Black 5 Cyan 14 Dark gray
 2 Red 6 Magenta 16 Light Gray
 3 Green 7 Yellow

However there is a much more flexible mechanism to deal with colour. The
 colour can be set
as a 3 or 4 element anonymous array (or piddle) which
 gives the RGB colours. If the array has
four elements the first element
 is taken to be the colour index to change. For normal work you
might
 want to simply use a 3 element array with R, G and B values and let the
 package deal
with the details. The R,G and B values go from 0 to 1.

The PDL Book

Page 57

In addition the package will also try to interpret non-recognized colour
 names using the default
X11 lookup table, normally using the rgb.txt
 that came with PGPLOT.

For more details on the handling of colour it is best that the user
 consults the PGPLOT
documentation. Further details on the handling of
 colour can be found in the documentation
for the internal routine _set_colour.

Filltype

Set the fill type to be used by poly, circle, ellipse and rectangle. The fill can either be
specified using numbers or name,
 according to the following table, where the recognized
name is shown in
 capitals-it is case-insensitive, but the whole name must be specified.

 1 Solid
 2 Outline
 3 Hatched
 4 CrossHatched

$opt = {Filltype => 'Solid'} (see below for an example of hatched
 fill)

Font

Set the character font. This can either be specified as a number
 following the PGPLOT
numbering or name as follows (name in capitals):

 1 Normal
 2 Roman
 3 Italic
 4 Script

Note that in a string, the font can be changed using the escape
 sequences \fn , \fr , \fi
and \fs respectively. See the
 documentation in Text and legends for more information
regarding
 escape sequences.

$opt = {Font => 'Roman'}; gives the same result as $opt = { Font=> 2 };

Hatching

Set the hatching to be used if either filltype 3 or 4 is selected (see
 above). The specification is
similar to the one for specifying arrows.
 The arguments for the hatching is either given using a
hash with the key Angle to set the angle that the hatch lines will make
 with the horizontal,
Separation to set the spacing of the hatch lines
 in units of 1% of min(height,width) of
the view surface, and Phase
 to set the offset the hatching. Alternatively this can be specified
as
 a 1x3 piddle $hatch=pdl[$angle, $sep, $phase].

 $opt = {Filltype => 'Hatched', Hatching => {Angle=>30,
Separation=>4}};

Can also be specified as

 $opt = {Fill=> 'Hatched', Hatch => pdl [30,4,0.0]};

For another example of hatching, see the command poly in Drawing lines and plotting points

below.

Justify

A boolean value which, if true, causes both axes to drawn to the
 same scale. If you want more
information about this option you are
 advised to consult the PGPLOT documentation for the
pgenv command.

Linestyle

Set the line style. This can either be specified as a number following
 the PGPLOT numbering

The PDL Book

Page 58

or as a name as shown in the following table.

 1 Solid
 2 Dashed
 3 Dot-dash
 4 Dotted
 5 Dash-dot-dot

Thus the following two specifications both specify the line to be dotted:

 $opt = {Linestyle => 4};
 $varopt = {Linestyle => 'Dotted'};

The names are not case sensitive, but the full name is required.

Linewidth

Set the line width. It is specified as a integer multiple of 0.13 mm.

 $opt = {Linewidth => 10}; # A rather fat line

PlotPosition

The position of the plot on the page relative to the view surface in
 normalized coordinates as
an anonymous array. The array should contain
 the lower and upper X-limits and then the
lower and upper Y-limits. To
 place two plots above each other with no space between them
you could do

 $win->env(0, 1, 0, 1, {PlotPosition => [0.1, 0.5, 0.1, 0.5]});
 $win->env(5, 9, 0, 8, {PlotPosition => [0.1, 0.5, 0.5, 0.9]});

Symbol

The plot symbol to use, with the default being 17 which gives a small
 filled circle. This is an
option for points and errb at the
 moment, but could be used for others too. It is either given
a piddle
 with the same number of elements as the plot variable, a name (or
 number)
specifying the symbol to use according to the following
 (recognized name in capital letters):

 0 Square 4 Circle 9 Sun
 1 Dot 5 Cross 11 Diamond
 2 Plus 7 Triangle 12 Star
 3 Asterisk 8 Earth 17 Default

PGPLOT has support for a much larger number of symbols. The reader is
 advised to consult
the PGPLOT documentation for further information or
 write a short program that loops through
all symbols. Note however that
 there are a lot. For instance symbol 2830 is a Cyrillic character
- the system used is the Hershey system for symbols. In addition you
 can draw regular
polygons with n-sides by setting the symbol to -n,
 so that $opt = {Symbol => -n }; but
be aware that -1 and -2
 draws a dot with the diameter set to the current linewidth.

Title

The title on top of the plot box.

XTitle

The title for the X-axis of the plot.

YTitle

The title along the Y-axis.

The PDL Book

Page 59

Hard-copies and plot options
The default options for screen display are not ideal for hard-copies
 (typically PostScript). Thus there is
a separate set of options for
 certain properties when the output device is a hard-copy one. Here we

will quickly summarize these

HardLW

The line width used on hard-copy devices. The default is 4.

HardCH

The character size used on hard-copy devices. The default is 1.4.

HardFont

The default font used on hard-copy devices. It defaults to 2.

HardAxisColour

The default colour to draw the axis with on a hard-copy device. This is
 particularly important
since light green (default screen colour) is not
 very visible on paper. The default is 1 (black).
The setting of colours
 work as with Colour

HardColour

The default plot colour on hard-copy devices, it defaults to 1 (black).

These options should be set either in the call to dev (see Setting up the plot area) or redefined
using the
 method outlined in the next section.

Setting default values for options

You might not be happy with the default settings for the various options
 and want to set a different
value permanently instead of specifying it
 with every call to dev , env or some other command. There
is some
 support for this, but it is limited in that it is not case-insensitive
 nor does it have synonyms
(except for colour/color) so the options must be written as above. (You will be notified if you did
something
 wrong).

That said it is fairly easy to use. You would normally set this in your .perldlrc file (see '
help\InsetSpace ~perldl ' in the perldl
 shell or ' pdldoc pdl '). The relevant function is
set_pgplot_options which takes a hash as argument with the options
 and their values, as in the
following example:

 use PDL::Graphics::PGPLOTOptions ('setpgplotoptions');
 setpgplotoptions('Device' => '/xs', 'LineWidth' => 10);

Note that some settings might affect more than you like. In particular
 the LineWidth and
LineStyle options will also affect the axis and
 axis labels drawn. However, character size, device
default plot symbol,
 border and other options can be conveniently be specified in this way.

Setting up the plot area

The first step for the budding plot maker is to set up the drawing area.
 This involves selecting what
device you want to create the plots on and
 then setting the region you want to plot in .

The destination for your plot commands is set with the dev command,
 and with different arguments to
dev you can send plots to various
 output devices such as:

GIF files - dev('giffile.gif/gif')

Postscript files - dev('filename.ps/ps')

Colour Postscript files - dev('filename.ps/cps')

The PDL Book

Page 60

X-windows plotting windows - dev('/xs')

If you wish to have several plotting panels per page you can specify the
 number in the x and y
directions as further arguments to dev so that
 to get four panels you would write dev('/xs', 2,
2).

For more detailed control over the created device, you can specify
 various options. The main four
options you might use are:

Aspect

The aspect ratio of a newly created output device. If your device is a
 graphics window under a
window system, this might or might not be
 applied when the window is created, but it should
be updated as soon as
 you plot to it. The default value is 0.618, i.e. the
 golden ratio.

WindowWidth

The width of the created output window. The width is specified in units
 of inches, which is
reasonably easy to deal with when printing out, but
 if your device is a graphics window it is all
a bit more unclear since
 different setups might have different ideas of what an inch
corresponds
 to in pixels.

WindowXSize

The X-size of the plot window, specified as WindowWidth and combined
 with Aspect if
WindowYSize is not set.

WindowYSize

As above but for the Y-size.

NX and NY

These two options set the number of panels in the X and Y direction
 respectively and are
alternatives to specifying the numbers of panels
 directly in the call to dev as dev(<device>,
 <nx>, <ny>).

The options are specified in an anonymous hash so that:

 pdl> dev('/xs', {NX => 4, NY => 2})

will create a plot window with four panels in the X-direction and 2 in
 the Y-direction, with a
default aspect ration and size. Alternatively
 the same window could have a specified width and
aspect ratio by
 specifying those options as

 pdl> dev('/xs', {NX => 4, NY => 2, Aspect => 1, WindowWidth =>
5})

However dev does not actually draw anything for you, it merely selects
 the output device. To
set up a plot you either call a plot command
 directly, or if you want more control over the axis
ranges you use the
 command env. This useful command takes the upper and lower limits in X
and Y as input:

 env(0, 1, 0, 1);

The PDL Book

Page 61

sets up a plotting area with both axes going from 0 to 1. If a
 logarithmic axis is desired this can
be achieved by passing an option to
 the env command, we can also use this to set the axis
labels:

 env(1, 1000, 0, 1, {Axis => 'LOGX', Xtitle => 'X-axis', Ytitle =>
 'Y-axis'});

The PDL Book

Page 62

Further information on the Axis option can be found in Options in plot commands.

It is important to realize that when you call env explicitly it
 automatically holds the plot for you,
so subsequent plot commands will
 plot on top of the plotting area, and if you want to make a
new plot you
 need either to call env again or call release explicitly.

Drawing lines and plotting points
The most important commands in the graphics package are probably the
 line drawing and point
plotting commands line and points . The
 most basic command is points which plots particular
symbols at given
 x and y values:

The PDL Book

Page 63

 pdl> $x = sequence(10)
 pdl> $y = $x*$x + 1
 pdl> points $x, $y

The action of the points command can be modified by adding options.
 The most important is
Symbol which changes the plot symbol and Charsize which changes the size of plot symbols; in
addition the Plotline option is a toggle which if set causes a line to be drawn
 through the plots:

 pdl> points $x, $y, {Symbol => 'Triangle', Plotline => 1, Charsize =>
5}

The PDL Book

Page 64

The string Triangle is equivalent to symbol number 7 and in general
 symbols will have to be
accessed using the numerical system, but there
 are textual equivalents for many commonly used
symbols (see Options in plot commands). The points command does also accept a
 piddle as the
symbol value, in which case it should have the same length
 as $x and $y and each point will be
plotted with the corresponding
 symbol value.

Plotting error-bars
Closely related to points is the routine for plotting symbols with
 error-bars, errb . This can be called
in a variety of ways to allow
 for various ways of giving errorbars and whether horizontal or vertical

errorbars are required. A typical call is:

 pdl> env(0, 5, -2, 30)
 pdl> $x=sequence(10)/2.0; $y=$x*$x
 pdl> $dy = sqrt($x+1);
 pdl> errb $x, $y, $dy, { Symbol => 'Square' }

The PDL Book

Page 65

which plots
 squares with symmetrical vertical error-bars. To get error bars in the
 horizontal direction
one gives these before the y-errors. Likewise it is
 possible to get asymmetric error-bars by giving the
upper and lower
 limits of the error bars separately for the X and Y variables as in the
 following
example:

 pdl> $x2 = pdl(1.5, 2.3, 4.7)
 pdl> $y2 = pdl(10, 22, 0)
 pdl> $dx = $x2->zeroes(); # No X-errors
 pdl> $yu= pdl(12,29,1)-$y2
 pdl> $yl= $y2 - pdl(7, 20, -2)
 pdl> errb $x2, $y2, $dx, $dx, $yl, $yu, {Symbol => 'Triangle'}

The PDL Book

Page 66

Drawing lines
We saw above that we could draw
 lines between points by setting the PlotLine option
 to points,
however there are much better ways to draw lines. The
 basic line-drawing command is line which
draws a straight line
 between each point.

 pdl> $x = zeroes(10)->xlinvals(-3, 3)
 pdl> line $x, sin($x)

The PDL Book

Page 67

The style, width and colour of the line can be changed with the options Style, LineWidth and
Colour / Color respectively as outlined
 in Options in plot commands.

Plotting histograms
A very similar command is bin which is useful for plotting
 histograms. This command draws
horizontal lines between x(i) and x(i+1) with the value y(i).

 pdl> $x = zeroes(10)->xlinvals(-3, 3)
 pdl> bin $x, sin($x)

The PDL Book

Page 68

By default the routine assumes that the X-values are the start points of
 the bin, if instead your values
are for the centers of the bins, you
 need to set the option Centre/Center to a true value. In addition

the appearance of the lines can be modified using the same options as
 for the line command.

Drawing polygons
Finally the poly command is like line but fills the polygon
 defined by $x and $y with the chosen
fillstyle (defaults to solid
 fill). If you display this you should consider putting FillStyle =>
'Outline' in your .perldlrc file as explained in Setting default values for options, or you can set
it explicitly as in the following example:

 pdl> $x=zeroes(20)->xlinvals(-2,2);
 pdl> $y=exp(-$x*$x);
 pdl> $xpoly = append($x->where($x <= 0), pdl(0));
 pdl> $ypoly = append($y->where($x <= 0), pdl(0));
 pdl> poly $xpoly, $ypoly, {FillType => 'Hatched'};

The PDL Book

Page 69

In this example
 it is worth noting the added complications to ensure that the polygon is
 closed. In
addition we have used the option FillType
 to change the style of fill used. This can be finely
adjusted if
 necessary, for further examples see PDL::Graphics::PGPLOT
 and the discussion of
FillType in Options in plot commands.

Displaying images
PGPLOT was originally designed for astronomy and as such it has good
 support for the display of
2D-data. In PDL this support has been
 simplified and there is now only one command for image
display, imag
 , which internally chooses between different PGPLOT display commands.
 The simplest
use of imag is to let it act on a 2D piddle so:

 pdl> $a = rvals(50,50, {Center => [25, 25]});
 pdl> imag $a;

The PDL Book

Page 70

However, most likely you will find that the shape is not
 circularly symmetric because the aspect ratio
of your graphics window is
 different from 1. How then can we correct this? The easiest solution is

probably to make sure that your graphics device has aspect ratio 1 by
 giving the Aspect option to the
dev command
 (see Setting up the plot area).

That isn't always an option though, and an alternative approach is to
 use the option Pix to the imag
command. This lets you adjust the
 aspect ratio of the image pixels. You can in addition specify the
number
 of image pixels per screen unit with the option Pitch so that to
 display the previous image
with square pixels and 2 image pixels per
 screen pixel you use:

 pdl> imag $a, { Pix => 1, Pitch => 2 }

You can also use Unit to specify the unit used for scaling and Scale for the reciprocal of Pitch,
see the PDL::Graphics::PGPLOT
 documentation for details. The Pix option only adjusts the

coordinate ranges and this might not always be what you require. In such
 situations a solution might
be to create a square plot window directly
 as mentioned earlier.

In addition you might want to specify a stretch of the gray-scale of the
 image. This can be obtained
first by specifying the max and min values
 of the displayed image (everything above is set to the max
value and
 everything below to the min value). This is set with the Min and Max options. Additionally it
is possible to adjust the image transfer
 function using the option ITF. Allowed values are Linear,
Log
 and Sqrt.

You can also add a colour bar (colour wedge in PGPLOT parlance) to the
 image display. This is
accomplished either using the draw_wedge (see
 below) command directly or by setting the
DrawWedge option to true in
 your call to imag . If you want to pass options to the draw_wedge

command, you can do that with the Wedge option. See below for
 further details.

The PDL Book

Page 71

Transforms
Finally a very useful feature of PGPLOT that is relevant both to images
 and also the contour plots
(see below) is the concept of a transform
 matrix. This is a 6 element vector, T(i) which maps input

pixels into display pixels so that pixel i,j is mapped to:

 X(ij) = T0 + T1(i) + T2(j)
 Y(ij) = T3 + T4(i) + T5(j)

It is always simplest to refer to this equation the first few times one
 sets up a transform vector.You
use this whenever your pixel positions in
 the real world were different from that represented by your
input image
 array.

 use PDL;
 use PDL::Graphics::PGPLOT;
 # Create two plot areas in the X-directions dev('/xs', 2, 1);
 # Create a Gaussian around the center of the image
 $a = rvals(101, 101, {Center => [50, 50]});
 $y = exp(-$a*$a/50.);
 # Display with a linear transfer function
 imag $y;
 # This transform vector maps the extreme points to
 my $tr = pdl(-10, 1.0/5.0, 0, -10, 0, 1.0/5.0);
 # Finally display the image with the transform and
 # a logarithmic transfer function.
 imag $y, {Transform => $tr, ITF => 'Log'};

Here we are contrasting two different ways of displaying the same image.
 On the left is the default
display of a Gaussian, whereas on this right
 is the result when mapping the pixels to a range from -10
to 10
 with a logarithmic transfer function. Here we show the use of the ITF
 and and Transform
options. Note that using Transform in
 conjunction with Pix is going to lead to unwanted results!

The PDL Book

Page 72

Colour bar/wedge
It is often desirable to annotate an image with a colour wedge showing
 the range of values in the
image. This is accomplished with the draw_wedge function in PDL::Graphics::PGPLOT (but you can
avoid
 calling this directly by setting the DrawWedge option in your call to imag , see above). This
function should normally give a decent result
 without the user setting any options except the Label
option which
 sets the annotation, but occasionally it is necessary to change its
 behavior and that is
done by setting the following options:

Side

What side the wedge will appear on, the default is the right side and it
 is specified as a single
character, ' B ' for bottom, ' L ', ' T ' and ' R ' for left, top and right respectively.

Displacement

The distance away from the axis. Default=2.

Width

The width of the wedge. Default=3

Foreground

The value to set the foreground
 colour to. This can be referred to as Fg as well. The default is
the
 max value used by imag when drawing the image.

Background

The value to set the background
 colour to. This can be referred to as Bg as well. The default is
the
 min value used by imag when drawing the image.

Label

The label used to annotate the wedge.

 dev '/xs', {WindowWidth => 6, Aspect => 1};
 $im = rfits('Frei/n4013lJ.fits');
 $im += abs(min($im)-1);
 $im = log10($im);
 imag($im, {PlotPosition => [0.1, 0.85, 0.175, 0.925], Min => 2.6, Max
=> 2.0 });
 draw_wedge({Wedge => {Width => 4, Label => 'Log Counts', Displacement

The PDL Book

Page 73

=> 1}});

Note that you will sometimes need to directly set the plot size to avoid
 clipping in the display. A full
example that shows the use of draw_wedge can be seen in the Figure above where we display a
galaxy
 and display a look-up table next to it.

Contour plots and vector fields
Contour plots are very similar to image displays and display lines at
 particular levels of the image. The
function to create contour plots is cont which at the simplest level only takes a 2D array as its

argument.

 $a = sequence(100,100); cont $a;

That might be all you need, but most likely you would like to specify
 contour levels, label contours and
maybe draw them in different colours.

You use the option Contours to give the wanted contour levels as a
 piddle and Labels to give an
anonymous array of strings for labels as
 shown in the example below:

 use PDL; use PDL::Graphics::PGPLOT;
 dev('/xs');
 $y = ylinvals(zeroes(100,100), -5, 5);
 $x = xlinvals(zeroes(100,100), -5, 5);
 $z = cos($x**2)+sin($y*2);
 cont $z, {Contours => pdl(-1, 0, 1), Labels => ['-1', '0', '1']};

The PDL Book

Page 74

In addition it is possible to colour the labels differently from
 the contour lines (LabelColour), to
specify the number of contours
 instead of their values (NContours) and to draw negative contours
 as
dashed lines and positive as solid lines by setting the option Follow to a value >0.

Overlaying a contour plot on top of an image is as easy as displaying
 the image, call hold and
display the contour plot. The reader might
 want to try a colour version of the example above ($z as in
the
 example):

 pdl> ctab('Fire');
 pdl> imag $z; hold;
 pdl> cont $z, {Contours => pdl(-1,0,1)};

The final 2D plot command we will deal with here is the command for
 plotting a vector field, vect.
This command takes two arrays as
 arguments. The first gives the horizontal component and the
second the
 vertical component of the vector field. The length of the vectors can be
 set using the
SCALE option and the position relative to the pixel
 centers with the option POS.

What is important to note with a command like vect is that you can
 use the Transform option to
map a smaller vector array to a larger
 image. This is often useful because a vector field with 256 x
256
 arrows on top of a similarly sized image will quickly be unreadable. The
 result of using this
technique is shown below together with the code
 that produced the plot.

The PDL Book

Page 75

 pdl> $x = xlinvals(zeroes(100,100), -5, 5)
 pdl> $y = ylinvals(zeroes(100,100), -5, 5)
 pdl> $z = sin($x*$y/2)
 pdl> imag $z;
 pdl> hold;
 # Show the partial derivatives wrt. x & y as vectors
 pdl> $xcomp = $x*cos($x*$y/2)/2
 pdl> $ycomp = $y*cos($x*$y/2)/2
 # We want to show only every tenth vector for clarity
 pdl> $s = '0:-1:10,0:-1:10';
 # Finally we need to map the final 10x10 array to the 100x100 image
 pdl> $tr = pdl(0,10,0,0,0,10)
 pdl> vect $xcomp->slice($s), $ycomp->slice($s), {Transform=>$tr}

Drawing simple shapes
In addition to the simple commands described above, there are a few
 convenient commands for
drawing simple shapes such as circles, ellipses
 and rectangles. These are fairly straightforward
commands with similar
 options and invocations so we will go through them fairly quickly. A
 common
issue with these commands as with the poly command is that
 they draw filled shapes, if you want
outlined shapes to be drawn you
 have to set the Filltype option to Outline.

The circle command is probably the simplest, it draws a circle (which
 may or may not look like a circle
depending on the aspect ratio of your
 display - see Setting up the plot area. The user specifies the

radius and the x and y position of the center:

 pdl> dev '/xs', {Aspect => 1, WindowWidth => 5}
 pdl> env 0, 10, 0, 10
 pdl> $radius=2; ($x, $y) = (4, 4)

The PDL Book

Page 76

 pdl> circle $x, $y, $radius, {LineWidth => 3}

The ellipse function is like the circle function but it requires
 the user to specify the minor and
major axis and the angle between the
 major axis and the horizontal. For ease of use it is probably
better to
 specify these as options, but if you remember the order you can also
 give them directly as
arguments to the function (x-position, y-position, major axis, minor axis, angle):

 pdl> dev '/xs', {Aspect => 1, WindowWidth => 5}
 pdl> env 0, 10, 0, 10
 pdl> ellipse 4, 4, {MajorAxis => 2, MinorAxis => 1, Theta =>
atan2(1,1)}

The PDL Book

Page 77

And finally the rectangle command draws
 rectangles where you can give the position of the centre,
the length of
 the sides and the angle with the horizontal. The operation is very
 similar to the ellipse
command with the length of the sides of the
 rectangle taking place of the major and minor axis.

 pdl> dev '/xs', {Aspect => 1, WindowWidth => 5}
 pdl> env 0, 10, 0, 10
 pdl> rectangle 4, 4, {XSide => 2, YSide => 1, Angle => atan2(1,1)}

The PDL Book

Page 78

Note that Angle and Theta are synonyms.

In addition you can set the sides to be similar by setting the Side
 option to the length you require.
The lengths are all specified in
 data-coordinates (which is why you should do a plot or call env
 before
using any of these commands).

For other shapes or when these are not sufficiently flexible you should
 use the poly command which
is called by both rectangle and ellipse .

Text and legends
The main command for drawing text on the plotting surface is the text
 command which at its basic
level just draws a string from the given x
 and y position:

 pdl> dev '/xs'
 pdl> env 0,10,0,10, {Axis => 'GRID'}
 pdl> text 'Left justified', 4, 1
 pdl> text 'Centered', 4, 2, { Justification => 0.5}
 pdl> text 'Right justfied', 4, 3, { Justification => 1.0}

The PDL Book

Page 79

Here we have included grid-lines to show the effect of the different
 justifications. Note that Justify
is a synonym for Justification,
 and that you need to give numerical values for the position.
Normally
 the text background is transparent as shown here, but you can also set
 an opaque
background by setting the BackgroundColour option to a
 colour name or value (see also the next
section).

In addition to the justification option one can also change the angle of
 the text using the Angle option
and specify the text and/or x and y as options (the best advice is to either do all or none).

 pdl> text {XPos => 1, YPos=> 4, Angle => 25, Text => 'Tilted'}

Non-alphanumeric symbols

PGPLOT has extensive support for non-alphanumeric characters in text
 strings and also offers
reasonable control over the display of
 superscripts, subscripts etc. This is all achieved using escape
sequences.
 In PGPLOT these are all signaled by the character \ .
 Thus \u starts a superscript or
ends a subscript - it signals a shift
 "up". Likewise \d starts a subscript or ends a superscript. Consult

the PGPLOT documentation for a full list.

Labeling your figures in PGPLOT
The only additional text-related function in the PDL::Graphics::PGPLOT
 interface is the legend
command which draws a legend in the plot
 window. This is a more complex routine which can be a
time-saver as soon
 as you have learned how to use it. It takes the same arguments as the text
command with the exception that the text argument is an
 anonymous array of labels for the legend,
and that a fourth argument is
 accepted which specifies the width of the box in which the legend will
 be
drawn. If this is not set or it is set to the string Automatic it
 will be adjusted to contain the legend
with the default font-size (or
 that set by the user via the CharSize option).

The PDL Book

Page 80

 pdl> $x = sequence(100) / 5; $y1 = sqrt($x); $y2 = $x**2;
 pdl> env(0, 4, 0, 15);
 pdl> line $x, $y1, {LineStyle => 'Dashed', Colour => 'Red'}
 pdl> line $x, $y2, {LineWidth => 3, Colour => 'Blue'}
 pdl> legend ['sqrt(x)', 'x \backslash u2'], 0.5, 10,
 {LineStyle => ['Dashed', undef],
 LineWidth => [undef, 3], Colour => ['Red', 'Blue'] }
 # ,Width => 1.0 } makes x**2 legend disappear, why?

The idea of the legend command is that you give the line-styles,
 line-widths, colours or symbols you
want to illustrate as anonymous
 arrays to the LineStyle, LineWidth, Colour and Symbol

options. Not very clear? Well, maybe an example will help.

The figure above is an example of legend in use. Two lines are drawn, a
 red dashed line and a blue
thick line. To annotate this plot using legend you give the text annotations as an (anonymous) array
of
 strings, the x and y position of the legend box and an anonymous hash
 containing information
about the legends to draw as shown in the
 example. The options used to specify a particular draw
style are the
 same as the ones used in the call to line and will undergo the same
 translations-note
however that you can specify a value of undef
 which requests that the current default for the

linestyle/linewidth/colour etc. is used. The Width option is used to set the width of the legend box and
is given
 in data coordinates. The idea is that you will create the plot, see
 where you want the legends
to go and then set the x and y width to the
 appropriate settings and redoing the plot, possibly using
the replay
 mechanism, see Recording and playing back plot commands.

The legend command has several options, the main of which are
 illustrated above. The remaining
options are useful for tweaking the
 appearance, and a full list is as follows:

Text

The PDL Book

Page 81

The text, this is an alternative to specifying it as the first argument
 to the function.

XPos

The X-position of the text, again as an alternative to specifying it as
 the second argument.

YPos

The Y-position of the text, again as an alternative to specifying it as
 the third argument.

Width

The width of the (invisible) box the legend is drawn inside. This can
 also be specified as the
fourth argument to the legend command. If
 this is set to the string Automatic the width is
calculated from the
 character size used.

Height

This can be used as an alternative constraint on size, giving the height
 of the legend box. If
both Width and Height are specified the
 smallest size is used (characters are not
compressed or stretched to
 fit).

TextFraction

The fraction of the box set aside for text. The default is 0.5 which
 usually is ok. Note that this
option used to be called Fraction ,
 which still is available as a synonym.

TextShift

This option allows for fine control of the spacing between the text and
 the start of the
line/symbol. It is given in fractions of the total
 width of the legend box. The default value is 0.1.

VertSpace

By default the text lines are separated by one character height (in the
 sense that if the
separation were 0 then they would lie on top of each
 other). The VertSpace option allows
you to increase (or decrease)
 this gap in units of the character height; a value of 0.5 would
add half
 a character height to the gap between lines, and -0.5 would remove the
 same
distance. The default value is 0. This option has VSpace as a
 synonym (more natural for the
TeX-heads out there).

Using colour
PGPLOT has a two disjoint sets of colours. One set determines the colour
 table used when displaying
images and is initialized to a grayscale, and
 the other is a set of 15 colours used to colour all other
plotting
 objects. The latter set is accessible through the Colour option
 described in Options in plot
commands Here we will concentrate on
 accessing the lookup-table for image display.

The command used to change the colour table is ctab, which in its
 generic form takes six arguments
specifying the intensity levels, red,
 green and blue colour components, contrast and brightness levels.
The
 contrast and brightness are optional so that we can say:

 pdl> $int = pdl([0, 0.33, 0.66, 1.0])
 pdl> $r = pdl([0.5, 0, 0.5, 1])
 pdl> $b = pdl([0.0, 0.5, 1.0, 0.5])
 pdl> $g = pdl([1.0, 0.5, 0.0, 0.5])
 pdl> ctab($int, $r, $g, $b);
 pdl> $a = rvals(100, 100)
 pdl> imag $a

The PDL Book

Page 82

...which should display a circularly symmetric figure
 with green in the centre, going through blue to
red-ish where $a is
 at a maximum.

It is however normally sufficient to use the colour tables made
 available by PDL::Graphics::LUT.
This package makes available a
 large number of standard colour tables which can be accessed using
the
 following commands:

lut_names

This returns a perl list of the available colour tables.

lut_ramps

As above, but returns a list of the names of the available intensity
 ramps.

lut_data

And finally the data in the tables can be accessed with this function
 which takes as arguments
the name of the colour table, and optionally a
 scalar determining if the colour table is to be
reversed and the name of
 an intensity ramp (default is a linear intensity ramp). The function

returns four piddles with intensity and RGB values which can immediately
 be passed to ctab.

Note that these commands do not set the colour table for you, you will
 still need to call ctab to do
that.

Thus to set one of the colour tables in the PDL::Graphics::LUT
 package, you do:

 pdl> use PDL::Graphics::LUT;
 pdl> print "Available tables: ".join(', ', lut_names());
 Available tables: aips0, backgr, bgyrw, blue, blulut, color, green,
 heat, idl11, idl12, idl14, idl15, idl2, idl4, idl5, idl6, isophot,
light,
 manycol, pastel, rainbow, rainbow1, rainbow2, rainbow3,
 rainbow4, ramp, random, random1, random2, random3,

The PDL Book

Page 83

 random4, random5, random6, real, red, smooth, smooth1,
 smooth2, smooth3, staircase, stairs8, stairs9, standard
 pdl> ctab(lut_data \series default ('rainbow1'));
 pdl> imag rvals(100,100);

which should give you a colour table that goes from black through green,
 blue and yellow to red.

All the colour tables with their names overlaid can be generated with
 this script:

 use PDL::Graphics::PGPLOT;
 use PDL::Graphics::LUT;
 dev("/xs",3,15);
 foreach(lut_names()){
 print"$_\n";
 ctab(lut_data($_));
 imag sequence(250,1);
 text $_,20,-0.2,{CHARSIZE=>20,LINEWIDTH=>20,COLOUR=>0};
 text $_,20,-0.2,{CHARSIZE=>20,LINEWIDTH=>1,COLOUR=>1};
 }

And the resultant figure is shown below:

Threading in PDL::Graphics::PGPLOT
The plot commands do not always lend themselves to easy threading
 because it can sometimes be
difficult to know what the user intends to
 do when (say) an array of images is passed to the imag
command. Are
 they to be displayed in several plot panels, are they to be plotted on
 top of each other,
seamlessly plotted next to each other? But even more
 complex is the question of treatment of options
and how to deal with
 these if there are less options than for instance, lines to draw (a
 common
occurrence if you wanted to draw a lot of lines).

That said the PDL::Graphics::PGPLOT interface does have limited
 support for threading in the
line and points functions. These call
 the tline and tpoints internally, and work just like line
and points except that they expect the input y-piddle to be 2D, with
 each line in the array plotted
against the x-piddle.

The PDL Book

Page 84

The way the options are treated is the most interesting. To set options
 for a set of lines, give an
anonymous array as argument to that option
 with a value for each line. If you give more options than
there are
 lines, the surplus is ignored. However if you give less, the options are
 repeated from the
start. Although possibly a bit confusing this is very
 powerful because you can get a large number of
combinations of colour
 and linestyle. For instance if you give 4 colours and 5 linestyles, you
 get a total
of 20 distinct combinations and should you give 3 linewidths
 as well you will suddenly have 80
different styles to work with with
 very little typing. Note however that you need to make sure that the

numbers you give are relatively prime - otherwise you will get much
 less possibility, just think of the
situation where you have 4
 linestyles and 4 colours, they will just loop in harmony and result in
 only 4
combinations.

Anyway, let us see how it all works in practice by creating a plot of
 sine curves with different
frequencies. This is a simple example where
 we want to colour all even frequencies with red and all
odd with blue
 and vary the line-styles as well:

 pdl> $pi=4*atan2(1,1);
 pdl> $x=zeroes(50)->xlinvals(0, $pi)
 pdl> $freq = sequence(10)
 pdl> $y = sin($freq*transpose($x))
 pdl> line $x, $y, {Colour => ['Red', 'Blue'], Linestyle=>[0,1,2,3,4,5]}

Recording and playing back plot commands
Have you ever created a good-looking plot on the command line of
 an interactive data program, be it
PDL, IDL, MATLAB, Octave or any other
 package, and wished that you could make a quick Postscript
copy of it
 only to find that you need to redo all the commands? I certainly
 have. In the newer versions
of PDL this
 is thankfully not the case anymore. These have a recording facility
 built in. However this is
not enabled by default (for reasons described
 later in this section), you need to turn it on yourself. The
way to do
 this is to set the $PDL::Graphics::PGPLOT::RECORDING
 variable to a true value:

The PDL Book

Page 85

 pdl> $PDL::Graphics::PGPLOT::RECORDING = 1

You can turn this on automatically in the perldl shell if you put
 this command in your ~/.perldlrc
file. Alternatively you can turn on
 recording for each plot device independently by setting the
Recording
 option to true when starting a device:

 pdl> dev '/xs', {Recording => 1}

Note that if you set the variable it must be set after you have use'd the PDL::Graphics::PGPLOT
because this package sets the
 variable when it initializes to its default value of zero.

In the following I will focus my attention on using the recording and
 playback functions in the perldl
shell as I envisage that it will be
 most useful there. There are a couple of potential uses in scripts as

well which I will get back to below, but this is not well thought
 through yet.

Before we continue it should also be added that the recording facility
 is somewhat experimental. In
particular it doesn't deal very well with
 multi-panel plotting where you jump back and forth between
panels. If
 you want to do that, make sure you specify the Panel option for every
 call.

It is very easy to use the recording facilities with a few less obvious
 aspects. An example should go a
long way to get you to understand the
 basics. First we set up a simple plot using the commands we
learned
 above:

 pdl> use PDL::Graphics::PGPLOT
 pdl> $PDL::Graphics::PGPLOT::RECORDING = 1
 pdl> $x = sequence(10)
 pdl> $y = random(10)
 pdl> dev '/xs'
 pdl> env(-1, 11, -0.5, 1.5, {Xtitle => 'Number'})
 pdl> points $x, $y, {Symbol => 'Plus'}

which should give you a scatter plot on screen. Now after constructing
 this fantastic piece of scientific
illumination you decided to make a
 Postscript version of it, but you are loathe to use the up key to

execute the commands again so you decide to use the recording
 facilities.

 pdl> $s = retrieve_state()
 pdl> dev 'replay_ex.ps/ps'
 pdl> replay $s

That is all. These commands should now have created a file called replay_ex.ps in the present
directory.

The retrieve_state commands retrieves the current state of the plot
 device and returns a variable
to hold this in. This state contains
 references to the data plotted and plot commands executed and
can be
 replayed, or re-executed, at a later stage using the replay command.
 You can also turn on
and off recording temporarily with the turn_off_recording and turn_on_recording
commands.

This suffices for most situations and should work for any complexity of
 plot constructed. There are
however a few rules that needs to be
 observed and possible pitfalls:

If you turn on recording globally using $PDL::Graphics::PGPLOT::RECORDING, you must set the
variable before opening a plot device because the value of the variable is
 only checked then. If you
forget, you can of course always turn it on
 with the turn_on_recording function.

The state is cleared whenever the plot window is
 erased, or if the user executes the clear_state
command. In
 particular this occurs when you change plotting device (although if you
 use several

The PDL Book

Page 86

windows they will each have their own state; see also the
 following section), so use the
retrieve_state command before you
 change device!

The state contains references to the data plotted.
 This does not use memory (at least not
appreciably!), but it does mean
 that an extra reference to the data is kept and the memory to the data

might not be freed when you expect it to. This can be problematic if you
 make a lot of image displays.
The best ways to avoid this problem in the perldl shell is to call the clear on the state: perldl>
$s->clear() or to re-use the variable next time you call retrieve_state. Note that this should
only be a problem if you
 explicitly call retrieve_state.

Finally since only references to the data are
 held, make sure you do not modify them before calling
replay or you
 might end up with a rather different looking plot!

What we covered now is the basic use of the recording facility, which
 hopefully will come in handy
rather often (which is why I recommend
 enabling it permanently in the perldl shell as outlined
above).
 However there are slightly less common uses of the facility that might
 come in handy:

Redoing a plot with slightly different data

The fact that the recording state contains references to the data
 enables a somewhat tricky but
potentially very useful trick to be
 executed: Redoing the plot with adjusted data. Sometimes you make
a
 complex plot only to discover that you had made an error with your data
 and you need to redo it.
This is where you can use the recording
 functions: Retrieve the state, make adjustments to the data
making sure
 not to break the link and run replay.

However, although this sounds quite easy it has a few subtleties that
 can give surprising results at
times. It might therefore be a good idea
 to look at a few, very similar and very basic, examples and
compare
 their effects. So let us first of all open a plot device:

 pdl> dev '/xs', {Recording => 1}

NOTE: What I describe here is not well tested and is probably buggy. This needs to be sorted
out before finishing - at least I have had a few weird results when trying this out.

We are going to use our example of plotting a parabola, and
 replaying it with various parameter sets.
Let us therefore define a
 couple of variables and plot this, first letting PDL decide on the plot
 limits:

 pdl> $x = sequence(10); $y = $x*$x
 pdl> line $x, $y;
 pdl> $s = retrieve_state()

The whole point of this problem is to change the variables, so let us
 add 3 to the X-values and replay
the command:

 pdl> $x += 3
 pdl> replay $s

This should give you a part of a parabola from x=3 to x=12, but
 now defined by the equation
y=pow((x-3),2) . Also the limits of the
 plot window should have adjusted themselves to the new x
values. Note
 that the y values are unchanged.

In the previous example the limits in the plot window adjusted to the
 new values for x and y because
the line command sets the plot
 limits if the plot is not held (such as with an explicit call to env). But
what happens if we redo the example with our own chosen
 limits?

 pdl> $x = sequence(10); $y = $x*$x
 pdl> env (0, 9, 0, 81)
 pdl> line $x, $y;

The PDL Book

Page 87

 pdl> $s = retrievestate()
 pdl> $x += 3; replay $s

The result now should be as shown in Figure XXXXXXXX
 which has the same plot limits as before,
but a shifted parabola. This
 is because the state now remembers the explicit env statement that
 you
had made and uses that to set the limits.

Finally you must remember that the reference is not to a variable name,
 but to a piddle which exists
separately from the variable. Thus you
 cannot change your data at a whim, so the following change
will change
 the data back to where we started

 pdl> $x -= 3; replay $s

But the following will not plot a parabola
 starting at x=5:

 pdl> $x = sequence(10)+5.0; replay $s

The reason for this is that the reference kept in the state object is to
 the actual data in the previous $x
-object and not to the variable
 name.

However sometimes you want to give a entirely new dataset to the plot.
 Say you wanted to plot a sine
curve instead of a parabola. Is there any
 way to do that? The answer is yes, but it looks rather ugly,
so you
 might want to consider whether this is something you want to do

 pdl> $x = sequence(10); $y = $x*$x
 pdl> line $x, $y; $s=retrievestate()
 # Now let us transfer this to a sine plot
 pdl> $y -= $y; $y += sin($x)
 pdl> replay $s

And voila! a sine curve does step forth. Not exactly elegant,
 but this trick allows you to replace any
variable used in a complex plot
 with a totally different content.

Using recording in scripts

In general the recording facility is of rather limited use in scripts
 because you can just as easily
encapsulate your plot commands in a
 subroutine and just call the subroutine when need be. At
present the
 only saving is probably in typing, but if the facility is extended to
 saving and restoring plot
commands the situation would change.

The object oriented approach
Assume that you are developing a simulation. When you are testing the
 code (all written in PDL of
course) you have to keep track of how some
 data changes at every time-step, but at the same time
you want to look
 at time-averages. If you were to use what we discussed above you would
 probably
want to display the time-steps in one panel and the
 time-averages in another panel in a plot window.
The problem with this
 is of course that one panel is updated a lot more often than the other
 so you
have to waste a lot of time re-plotting the time-average.

Clearly there are two possible ways to improve this: a) have a method
 which allows you to plot to a
given panel when you want and b) have to
 plot windows. It is possible to use the first approach by
giving the Panel option to the plot commands:

 dev('/xs');
 for (my $i=0; $i<$n; $i++) {
 $integrand = func($x, $i);
 points $x, $integrand, {Panel => 2};
 $sum += $integrand;

The PDL Book

Page 88

 }
 points $x, $sum/$n, {Panel => 1};

So that this hypothetical code-bit would keep plotting in panel 2,
 updating the plot there until the loop
is over at which point panel 1 is
 updated.

This can be practical, but it is rather limited given the requirement of
 giving the panel number every
time. Instead an alternative approach
 would be to create several plot windows, and for this you really
ought
 to use an object oriented approach. In this approach every plot device
 is a separate object and
you call every plot command via this object. So
 the previous example would be

 my $opt = {Device => '/xs', WindowWidth => 7, Aspect => 1};
 my $integrandwindow = PDL::Graphics::PGPLOT::Window->new($opt);
 my $integralwindow = PDL::Graphics::PGPLOT::Window->new($opt);
 for (my $i=0; $i<$n; $i++) {
 $integrand = func($x, $i);
 $integrandwindow->points($x, $integrand);
 $sum += $integrand;
 }
 $integralwindow->points($x, $sum/$n);

Why use the OO interface

So, you may say, what is the point with the OO interface except
 appeasing the OO fanatics around? It
seems to require more typing and I
 can see no significant advantage.

In many situations these are valid arguments, if you are just plotting
 data on the command line in
perldl , for instance, or do not need
 multiple plot windows. And at some level the OO interface is
primarily a
 convenience for the programmer, and it is in fact how the
 PDL::Graphics::PGPLOT
package is implemented. That said though there are
 some (possibly strong) arguments for using the
OO interface:

You do not pollute your namespace, which means
 that you are free to define routines that are
called line , points
 and so on. This is the main reason why I use this interface personally

when doing simple plots in programs.

It is a lot easier to deal
 with multiple plot windows when using the OO interface, in fact I would
personally discourage people from having multiple plot windows without
 using the OO
interface.

Eventually an argument in favor of the OO interface will hopefully be
 that it would enable an easier
mix of different plotting packages so
 that they can all be accessed in a similar way, but we are not
there
 yet.

Usage of the OO interface

To use the OO interface one needs to create a new plot object and then
 call the plot routines through
this object. If you want several windows,
 you just create more objects and switching between these
should be
 straightforward as you should be able to see in the following examples.

Note that since the OO interface is less suited to use on the command
 line, I have opted to show the
examples as small code-bits but they
 should all be possible to execute from the perldl command
line. In
 addition this section will merely give several examples of use of the OO
 interface and not
discuss (again) the different commands since they are
 the same as we went through above, it is just a
different way of calling
 them.

Opening a plot object and plotting a simple plot

To create a plot object we first need to use the PDL::Graphics2D
 package - this is merely a shortcut

The PDL Book

Page 89

for the true
 PDL::Graphics::PGPLOT::Window package, but why type more when it doesn't
 gain you
anything? Then we create the object using the standard Perl
 notation PDL::Graphics2D-new()> :

 use PDL;
 # Note that we could also access this as
 # PDL::Graphics::PGPLOT::Window, but since this is
 # shorter I advocate its use.

 use PDL::Graphics2D;
 # Now create a plot window
 my $winopt = {Device => '/xs', WindowWidth => 7, Aspect => 1};
 my $w = PDL::Graphics2D->new($winopt);

 # Create a simple plot
 $x = sequence(10);
 $w->points($x, $x*$x, {Symbol => 'Triangle'};

Note how we use the window object ($w) when calling the points
 routine - since we didn't use the
PDL::Graphics::PGPLOT package
 there isn't any function called points in our namespace and we
use
 the window object to get hold of it. The structure is of course very
 similar to what we did in
Drawing lines and plotting points
 above and there really is little practical difference between the two

interfaces when plotting to only one window.

Therefore let us up the stakes somewhat and try a more practical
 example. In many situations you
might have one plot where each point in
 the plot has many values associated to it (i.e. your plot is a
slice in
 a multidimensional space). When you examine such data you often would
 like to click on a
point on your plot and bring up associated data for
 that point in a different display - this is an obvious
situation for the
 OO interface.

The logic for this project is easy: We first create two windows

 use PDL;
 use PDL::Graphics2D;
 # Create two identical windows
 my $winopt = {Device => '/xs', WindowWidth => 7, Aspect => 1};
 my $data = PDL::Graphics2D->new($winopt);
 my $associated = PDL::Graphics2D->new($winopt);

Note that it is a good idea to name your variables containing the window
 objects with sensible names
for later use.

The next step is to plot data (well, in this example I will merely
 create them):

 my $x = sequence(10);
 my $y = $x**2;
 # Plot points using standard symbol
 $data->points($x, $y);

which should draw a nice parabola on your screen. Now the user (that is
 you, reader) has to click on
(or near) a point to select it - we will
 then use the X-value of that point to set the period of sine curve:

 print "Dear user, please click on (or close to) a point\n";
 my ($xin, $yin) = $data->cursor();
 # closest will now contain the index of the point closest to
 # where the user clicked.

The PDL Book

Page 90

 my $closest = minimum_ind(abs($x-$xin) + abs($y-$yin));
 my $y_associated = sin($x->at($closest)*$x);
 $associated->line($x, $y_associated);

That should now give you a sine wave in the second window with a
 frequency dependent on where
along the X-axis you clicked. Of course it
 would be a lot easier to use $xin, but that wasn't what we
tried to
 do after all.

This is of course a very simplified example, but it does provide a
 framework for a more
comprehensive data explorer. From astronomy a
 typical example would be to plot scatter-plots for two
variables and
 bringing up images of the objects by clicking at their data in the plot
 window. In other
situations the data might be financial data for a set
 of companies and clicking on the points would
bring up a comprehensive
 summary of that company. You are limited by your imagination!

The bottom line is that whatever your requirements are, the OO approach
 is probably better when you
need more than one plot window, but when you
 only use one window, and particularly on the perldl
command line.

Using PGPLOT commands directly
The Perl module PGPLOT contains interfaces to all PGPLOT functions. The
 majority of these
functions have alternative interfaces in the PDL
 package, but there might be situations when you
need to use these
 functions directly. And in addition if you are used to using PGPLOT from
 before you
might prefer the interface, although it is rather
 inconvenient when dealing with PDL.

Full documentation for the PGPLOT functions can be found at Tim
 Pearson's WWW page:
http://astro.caltech.edu/~tjp/pgplot/ . This is
 not the place to discuss the details of
PGPLOT, but it is interesting to
 learn how to access these routines from PDL with piddles as
arguments.

Typical PGPLOT drawing functions take as arguments the number of points
 and references to perl
arrays to give x and y coordinates, thus:

 @x = (1,2,3);
 @y = (3,-1,7);
 pgpoint(3, \@x, \@y, 4);

will plot three points with the x and y values indicates and using
 plotting symbol 4 (circle).

The complication for PDL users is that piddles are not perl arrays and
 hence have to be converted to
array references before they can be passed
 to a PGPLOT function. This is achieved with the
get_dataref command
 which returns a reference to the data in a piddle. Thus the example
 above
would be written:

 $x = pdl(1,2,3);
 $y = pdl(3,-1,7);
 pgpoint($x->nelem, $x->getdataref, $y->getdataref, 4);

in PDL.

In general you should use the provided wrapper routines for readability,
 but feel free to combine the
two if you prefer. You should be able to
 pick'n'mix functions from the PDL interface and from PGPLOT
directly,
 although a few subtle bugs might creep in (in particular the handling of
 several plot windows).

There are several situations where direct access to PGPLOT might be
 necessary. Although hopefully
they are not very common, it can be useful
 to look at a few to see what the PDL::Graphics::PGPLOT
module doesn't
 do. Since it is possible to mix PGPLOT commands with the
 PDL::Graphics::PGPLOT
commands this is not a major problem though,
 although it might require you to learn some PGPLOT.

The PDL Book

Page 91

So to turn to some
 examples, I have decided to list a few simple problems:

Drawing several plot boxes on top of each other to
 get differently shaded grids. This is done in
one of the demonstration
 programs that come with PGPLOT and can't be easily done in

PDL::Graphics::PGPLOT without some playing around with the PlotPosition option. It is a
lot easier to call pgbox directly.

Complex contour plots - in particular
 non-rectangular. At present there is no support for
non-rectangular
 contour plots in PDL::Graphics::PGPLOT, and neither is any support
 planned
for the near future. You are advised to read the PGPLOT
 documentation for pgconx and have
a look at demo #3 in the PGPLOT
 distribution for an example.

The bottom line is that as your plots get more and more complex you
 might end up in a situation
where you need the finer control offered by
 the PGPLOT package, but for day-to-day use it is hoped
that
 PDL::Graphics::PGPLOT will address most people's needs. And if doesn't
 then let us know!
 =for
comment
 :!podchecker PLplot.pod && pod2html --infile=PLplot.pod --outfile=PLplot.html
 open
PLplot.html and click 'reload'
 also
 conversion for PDF reading is:
 pod2pdf PLplot.pod --icon-scale 0.25
--title "PDL Book" --icon logo2.png --output-file PLplot.pdf

Graphics with PLplot
The PDL::Graphics::PLplot perl module, is an interface to the http://plplot.sourceforge.net PLplot C
library. It is a
 2d plotting library, but also does 1-D bargraphs and 3-D projection graphs.

Many of the examples, discussed below, are from the
 PDL::Graphics-PLplot/t subdirectory, of the
source module. These are
 written in the functional style, and are direct translations of the
 examples
which come with the PLplot C library

The rest of the examples, are object-oreiented, derived from David
 Merten's slideshow on
PDL::Graphics::PLplot. His very informative
 slideshow can be downloaded or viewed at
http://www.slideshare.net/dcmertens/p-lplot-talk

Introducing PDL::Graphics::PLplot
The basic methods available:

 new, close -> create and finalize plot objects
 xyplot, stripplots -> 2D plotting
 shadeplot -> `topographical' 3D data representation
 histogram -> plot distribution of 1D data
 bargraph -> plot distribution of categorical data
 text -> annotate plots
 setparm -> set various plotting parameters

Once you specify a plotting option, the option will carry over to
 future calls on the same PLplot object.

The first thing you will notice about invoking PLplot, is that it will
 prompt you for an output device, or
maybe a file to save to, if you do
 not specify one either in perldl or a script

The PDL Book

Page 92

You can specify a device

 To specify the output device:

 pdl> dev('/xwin')

 or in a script

 use PDL::Graphics::PLplot;
 # display the image in the xwindow
 my $pl = PDL::Graphics::PLplot->new(
 DEV => 'xwin'
);

Plotting a simple parabola
This code:

 #!/usr/bin/perl
	 use warnings;

The PDL Book

Page 93

	 use strict;
	 use PDL;
	 use PDL::Graphics::PLplot;
 my $pl = PDL::Graphics::PLplot->new(DEV => "png", FILE => "$0.png"
);
	 my $x = sequence(10);
	 my $y = $x**2;
	 $pl->xyplot($x, $y);
	 $pl->close;

produces a nice parabola, in a PNG file.

Object Oriented Examples
This section shows how to use the object oriented methods of the Perl interface
 to
PDL::Graphics::PLplot

Axis labelling and titles

	 use PDL;
	 use PDL::Graphics::PLplot;

	 # Generate a time series
	 my $time = sequence(100)/10;
	 my $sinewave = 5 * sin($time);
	 # Create the PLplot object: use xwin for display
	 my $pl = PDL::Graphics::PLplot->new(DEV => "xwin");

The PDL Book

Page 94

	 # Plot the time series
	 $pl->xyplot($time, $sinewave
	 , XLAB => 'time [s]'
	 , YLAB => 'position [cm]'
	 , TITLE => 'Mass on Spring'
);
	 # Close the PLplot object to finalize
	 $pl->close;

Interactive crosshairs with the wxwidgets output device
	 # Create the PLplot object: use wxwidgets for display
	 # wxwidgets allows saving to many file types, and
	 # has a Locate function under the Plot menu entry
	 # providing interactive crosshairs to read individual plot values

	 my $pl = PDL::Graphics::PLplot->new(DEV => "wxwidgets");

The PDL Book

Page 95

setting the DEV and FILE options, and using the aliased option for new()
 There are 2 ways to call new(), and the aliased module makes the syntax a
 bit easier.

 The conventional way:
 use PDL::Graphics::PLplot;
 my $pl = PDL::Graphics::PLplot->new(DEV => "xwin");

 The aliased way:
 use aliased 'PDL::Graphics::PLplot';
 my $pl = PLplot->new(DEV => "xwin");

 Specify the DEV in your call to new.
 For output to a window:
 -- option DEV must be set to xwin, wxwidgets, or similar
 For output to a file:
 -- option DEV must be set to xfig, svg, pscairo, or similar
 -- option FILE must give the output file's name
 For output to a memory buffer:
 -- option DEV must be set to mem or memcairo
 --option MEM must be passed a piddle where the results will be
plot

The PDL Book

Page 96

Outputting postscript
	 # Save the image to a postscript file
	 my $pl = PDL::Graphics::PLplot->new(
 DEV => 'ps'
 , FILE => 'myfile.eps'
);

Tools for plotting points
You can plot lines, symbols, or both by using the PLOTTYPE
 option. You specify error bars in x and y
by passing a scalar or a
 piddle with those errors to XERRORBAR and YERRORBAR.

 -- PLOTTYPE => LINE plots data as lines (default)
 -- PLOTTYPE => POINTS plots data as points
 -- PLOTTYPE => LINEPOINTS plots data as lines and points
 -- PLplot's built in error-bars can plot asymmetric error bars,
 but the high-level PDL bindings do not support this.

To set the symbol type and size, use the SYMBOL and SYMBOLSIZE options.

 -- Symbol sizes are measured as multiples of the default size
 -- Symbol sizes can be fractional, such as 0.7 or 4.5
 -- Symbols are identified by their number

A Symbols example
 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use PDL::Graphics::PLplot;

 # Generate a time series
 my $time = sequence(100)/10;
 my $sinewave = 5 * sin($time);

 # Save the image to a postscript file

 my $pl = PDL::Graphics::PLplot->new(
 DEV => 'pscairo'
 , FILE => 'Symbols.eps'
);

 # Plot the time series as points
 $pl->xyplot($time, $sinewave
 , PLOTTYPE => 'POINTS'
 , SYMBOL => 843
 , YERRORBAR => grandom($time)/2
);

 $pl->close;

The PDL Book

Page 97

Plotting multiple curves
Depending on what you want, there are at least five ways to plot multiple curves.

 -- plot a multidimensional piddle
 -- call xyplot multiple times
 -- use stripplots
 -- specify SUBPAGES in the constructor
 -- create insets using the VIEWPORT option

Plotting multiple curves with a multi-dimensional piddle

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 # Generate a time series
 my $time = sequence(100)/10;
 my $sinewave = 5 * sin($time);
 my $cosinewave = 4 * cos($time);
 my $toplot = cat($sinewave, $cosinewave);

 # Save the image to a postscript file

 my $pl = PLplot->new(

The PDL Book

Page 98

 DEV => 'pscairo',
 FILE => 'Multidimensional.eps'
);

 # Plot the time series
 $pl->xyplot($time, $toplot);

 $pl->close;

Colorizing multiple data sets

Use color to differentiate different data sets:

 -- For multidimensional piddles, plot as POINTS and use the
 COLORMAP and PALETTE options.
 -- For multiple calls to xyplot, use POINTS, COLORMAP, and
 PALETTE, or use COLOR option.

The COLORMAP option lets you specify a third value for each
 (x, y) pair, making it (x, y, colorval).

Which color is associated with the minimum colorval? Which
 color is associated with the maximum
value? All of these are set
 with the PALETTE.

Valid PALETTEs include:

 RAINBOW - from red to violet through the spectrum
 REVERSERAINBOW - violet through red

The PDL Book

Page 99

 GREYSCALE - from black to white via grey
 REVERSEGREYSCALE - from white to black via grey
 GREENRED - from green to red
 REDGREEN - from red to green

Note:

 -- the default palette is not named
 -- this only works when plotting points, not lines or error bars

A multi-colored multi-curve plot

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'Multidimensional2.eps');

 # Generate a time series and phase offset
 my $time = sequence(100)/10;
 my $phi = zeroes(4)->xlinvals(0, 3)->transpose;

 my $sinewaves = 5*sin($time + $phi);
 # Plot the time series and phi color key
 $pl->xyplot($time, $sinewaves,
 PLOTTYPE => 'POINTS',
 COLORMAP => $phi,
 TITLE => 'sin(x + #gf)');

 $pl->colorkey($phi, 'v',
 TITLE => '#gf',
 VIEWPORT => [0.93, 0.96, 0.15, 0.85]);
 $pl->close;

The PDL Book

Page 100

Plotting multiple curves with differently colored calls to xyplot

An alternative to plotting a multi-dimensional piddle, you can plot multiple
 curves by multiple calls to
xyplot, specifying a different color for each plot.

Legal colors are:

 BLACK GREEN WHEAT
 BLUE RED AQUAMARINE
 GREY BLUEVIOLET YELLOW
 PINK BROWN CYAN
 TURQUOISE MAGENTA SALMON
 WHITE ROYALBLUE DEEPSKYBLUE
 VIOLET STEELBLUE1 DEEPPINK
 MAGENTA DARKORCHID1 PALEVIOLETRED2
 TURQUOISE1 LIGHTSEAGREEN SKYBLUE
 FORESTGREEN CHARTREUSE3 GOLD2
 SIENNA1 CORAL HOTPINK
 LIGHTCORAL LIGHTPINK1 LIGHTGOLDENROD

Notes:

 -- Curve clipping - the first plot sets the plotting boundaries
 and later plots fall outside of those boundaries
 -- Changing `current' color - the first plot sets the `current'
 color and the second does not specify a color
 -- PLplots has a discrete color limit of 16, including foreground and
background color.

The PDL Book

Page 101

When plotting multiple curves, the first plot sets the boundaries, and
 can result in subsequent plots
being clipped. The obvious solution, is
 to plot your curve with largest values first. To force a separate
color
 from the first set default color, always specify the colors in xyplot.

A multiple curve with xyplot

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 # Generate a time series
 my $time = sequence(100)/10;
 my $sinewave = 5 * sin($time);
 my $cosinewave = 4 * cos($time);

 # Save the image to a postscript file
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'Multiple curves.eps'
);

 # Plot the sine in black, cosine in red
 $pl->xyplot($time, $sinewave);
 $pl->xyplot($time, $cosinewave , COLOR => 'RED');

 $pl->close;

The PDL Book

Page 102

Solving curve clipping on multiple xyplots with the BOX option

When you have multiple xyplots, with widely separated values, you can
 use the xyplot BOX option
to prevent clipping.

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 # Generate a time series
 my $time = sequence(100)/10;
 my $sinewave = 5 * sin($time);
 my $cosinewave = 6 * cos($time);

 # Save the image to a postscript file
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'Multiple curves3.eps'
);

 # Plot the sine with full bounds
 $pl->xyplot($time, $sinewave,
 BOX => [$time->minmax, $cosinewave->minmax]);

The PDL Book

Page 103

 # Plot the cosine in red
 $pl->xyplot($time, $cosinewave , COLOR => 'RED');

 $pl->close;

Plotting multiple curves with stripplot

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 # Save the image to a postscript file
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'stripplots.eps'
);

 # Generate a time series
 my $time = sequence(100)/10;

 # Make stripplots with the
 # different time series
 $pl->stripplots($time,
 [sin($time), cos($time)],
 XLAB => 'x',

The PDL Book

Page 104

 YLAB => ['sine', 'cosine'],
 COLOR => ['BLUE', 'RED'],
 TITLE => 'Sine and Cosine'
);

 $pl->close;

Stripplots and reading DATA with rcols

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use PDL::Graphics::PLplot;

 my ($t, $data) = rcols(*DATA, 0, []);

 my $pl = PDL::Graphics::PLplot->new(DEV => "xwin");

 # Make stripplots with the different time series
 # notice data must be transposed
 $pl->stripplots($t, $data->transpose);
 $pl->close;

The PDL Book

Page 105

 __DATA__
 # t x1 x2 x3
 1 4 6 -1
 2 3 9 3
 3 2 8 7
 3 -1 4 10
 5 1 2 6
 6 5 -1 5

Multiple plots with SUBPAGE

When you create your PLplot object, you can carve the canvas
 into immutable subpages.
 my $pl =
PDL::Graphics::PLplot->new(
 # ...
 , SUBPAGES => [$nx, $ny]
);

For example:

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 # Generate a time series
 my $time = sequence(100)/10;

 # Save the image to a postscript file

The PDL Book

Page 106

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'subpages.eps',
 SUBPAGES => [2,2]);

 # Plot the time series
 $pl->xyplot($time, sin($time), TITLE => 'Sine');

 $pl->xyplot($time, cos($time), TITLE => 'Cosine',
 SUBPAGE => 0);

 $pl->xyplot($time, tan($time), TITLE => 'Tangent',
 SUBPAGE => 4);

 $pl->xyplot($time, $time**2, TITLE => 'Squared',
 SUBPAGE => 3);

 $pl->close;

Boxes and Viewports

The PDL Book

Page 107

Using Insets

ometimes you want a small inset in one of the corners of your plot. If you
 ant to do this you should:

 -- Specify the VIEWPORT
 -- Specify the BOX
 -- Use a smaller CHARSIZE
 -- If the underlying plot has a title, you should probably undefine it
 -- Undefine or change the XLAB and YLAB unless you want to use the
 values from the underlying plot

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL::Graphics::PLplot;
 use PDL;
 use PDL::NiceSlice;

 # Generate a noisy time series
 my $time = sequence(1000) /10;
 my $sinewave = 1 * sin($time) + grandom($time) / 3;

 # Save the image to a postscript file
 my $pl = PDL::Graphics::PLplot->new(DEV => 'pscairo', FILE =>
'inset.eps');

 # Plot subset as the main plot
 $pl->xyplot($time(0:65), $sinewave(0:65), TITLE => 'Noisy Pendulum',
 YLAB => 'Displacement d [m]', XLAB => 'Time t [s]');

 # Plot full data set as inset
 $pl->xyplot($time, $sinewave,
 TITLE => undef,
 VIEWPORT => [0.525, 0.825, 0.525, 0.775],
 BOX => [$time->minmax, $sinewave->minmax],
 CHARSIZE => 0.6
);
 $pl->close;

The PDL Book

Page 108

Basics of viewports
PLplot has three distinct measurements for your plot at any point:

 -- the plotting surface's dimensions
 -- the viewport's relative extent
 -- the `natural' coordinates within the viewport

Surface dimensions
The dimensions of the canvas or surface that you are using can
 be specified in the constructor (and
cannot be changed later):

 my $pl = PDL::Graphics::PLplot->new(
 # other options...
 PAGESIZE => [$width, $height]
 # other options...
);

These are measured either in pixels or milimeters depending on
 whether the underlying format is a
raster or vector format.

Viewport positioning
The viewport carves out a chunk of space on the canvas for
 plotting and can be changed with each
plotting function.

 $pl->xyplot($x, $y

The PDL Book

Page 109

 # other options
 , VIEWPORT => [$xmin, $xmax, $ymin, $ymax]
 # other options
);
 # Plot on right half of the page
 VIEWPORT => [0.5, 1, 0, 1]
 # Plot in upper half of the page
 VIEWPORT => [0, 1, 0, 0.5]
 # Vertically centered, horizontally offset
 VIEWPORT => [0.5, 0.7, 0.4, 0.6]

Viewport values are fractions of the full page (or sub-page) width
 all four values should be a number
between 0 and 1.

The clipping box

If the viewport indicates the chunk of space you will be graphing
 on, the clipping box indicates the
coordinates within that chunk
 of space.

 $pl->xyplot($x, $y
 # other options...
 , BOX => [$xmin, $xmax, $ymin, $ymax]
 # other options...
);

 # x runs from 0 to 10, y from -8 to 8:
 BOX => [0, 10, -8, 8]
 # piddles have the minmax method:
 BOX => [$x pdl->minmax, $y pdl->minmax]

When plotting using the specified box, a data point near (0, -8)
 will be plotted near the lower left
corner and a data point near
 (5, 0) will be plotted at the center.
 Viewports define where plots are
drawn. Tick labels, axis labels,
 and plot titles are drawn outside the viewport.

Page size

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $y = $x**2;

 # Set a custom page size
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 2.eps',
 BACKGROUND => 'SKYBLUE',
 PAGESIZE => [360, 240]
);

 # Plot a quadratic function:
 $pl->xyplot($x, $y, YLAB => 'y', XLAB => 'x');

The PDL Book

Page 110

 $pl->close

Viewport upper right

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $y = $x**2;

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 3.eps',
 BACKGROUND => 'SKYBLUE'
);

 # Put the plot in the upper right:
 $pl->xyplot($x, $y,
 YLAB => 'y',
 XLAB => 'x',
 VIEWPORT => [0.5, 0.9, 0.6, 0.8]
);

 $pl->close;

The PDL Book

Page 111

Viewport centered

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $y = $x**2;
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 4.eps',
 BACKGROUND => 'SKYBLUE'
);

 # Center the plot
 $pl->xyplot($x, $y,
 YLAB => 'y', XLAB => 'x',
 VIEWPORT => [0.3, 0.7, 0.3, 0.7]
);

 $pl->close;

The PDL Book

Page 112

Viewport extreme bounds

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $y = $x**2;
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 5.eps',
 BACKGROUND => 'SKYBLUE'
);

 # Try extreme bounds for the viewport
 $pl->xyplot($x, $y ,
 YLAB => 'y',
 XLAB => 'x',
 VIEWPORT => [0, 1, 0.3, 1]
);

 $pl->close;

The PDL Book

Page 113

Viewport multiple plots

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $y = $x**2;
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 6.eps',
 BACKGROUND => 'SKYBLUE');

 # Big plot on left
 $pl->xyplot($x, $y, VIEWPORT
 => [0.1, 0.6, 0.1, 0.8]);

 # Medium plot on upper right
 $pl->xyplot($x, $y, VIEWPORT
 => [0.5, 0.9, 0.6, 0.9]);

 # Small plot on lower right
 $pl->xyplot($x, $y, VIEWPORT

The PDL Book

Page 114

 => [0.7, 0.9, 0.1, 0.4]);

 $pl->close;

The basic box

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 7.eps',
 BACKGROUND => 'SKYBLUE');

 # Sine wave on top
 $pl->xyplot($x, sin($x),
 VIEWPORT => [0.1, 0.9, 0.55, 0.9]);

 # Quadratic on bottom
 # BOX is inherited from first plot
 $pl->xyplot($x, $x**2,

The PDL Book

Page 115

 VIEWPORT => [0.1, 0.9, 0.1, 0.45]);

 $pl->close;

The tweaked box

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 8.eps',
 BACKGROUND => 'SKYBLUE');

 # Sine wave on top
 $pl->xyplot($x, sin($x),
 VIEWPORT => [0.1, 0.9, 0.55, 0.9]);

 # Quadratic on bottom
 $pl->xyplot($x, $x**2,
 VIEWPORT => [0.1, 0.9, 0.1, 0.45],

The PDL Book

Page 116

 BOX => [-3, 3, 0, 9]);

 $pl->close;

Box with 2 plots

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 9.eps',
 BACKGROUND => 'SKYBLUE');

 # Sine wave
 $pl->xyplot($x, sin($x));

 # Plotting a quadratic on top works
 # but the bounds are not good
 $pl->xyplot($x, $x**2);

The PDL Book

Page 117

 $pl->close;

Multiple plots, changing the box within a single viewport

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $x = zeroes(20)->xlinvals(-3, 3);
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'box example 10.eps',
 BACKGROUND => 'SKYBLUE');

 # Sine wave
 $pl->xyplot($x, sin($x));

 # Changing the box for the quadratic
 # does not work - bad y ticks
 $pl->xyplot($x, $x**2,
 BOX => [-3, 3, 0, 9]);

 $pl->close;

The PDL Book

Page 118

Box and viewport summary

For multiple plots on the same viewport, set the box with the first call to xyplot For non-overlapping
plots (on different viewports), specify the box as necessary The viewport specifies the extent of the
plotting region; tick labels, axis labels, and titles are drawn outside the viewport

Other types of plot
Shadeplot

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'shadeplot3.eps');
 # Define z = sin(x) + cos(y), a 2D piddle:
 my $x=zeroes(51)->xlinvals(-10, 10);
 my $y=zeroes(51)->xlinvals(1, 7);
 my $z=sin($x) + cos($y->transpose);
 # Make a shade plot with 15 color steps:
 $pl->shadeplot($z, 15,
 BOX => [$x->minmax, $y->minmax],
 XLAB => 'x', YLAB => 'y',
 TITLE => 'Egg Carton');
 # Add a 'vertical' color key:
 $pl->colorkey($z, 'v', VIEWPORT => [0.93, 0.96, 0.15, 0.85],
 XLAB => '', YLAB => '', TITLE => 'depth');

The PDL Book

Page 119

 $pl->close;

Histogram

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'histogram.eps');

 # Generate some data:
 my $data = grandom(1000);

 # Make a histogram of that data in 20 bins:
 $pl->histogram($data, 20);

 $pl->close;

The PDL Book

Page 120

Histogram height

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'histogram2.eps');

 # Generate some data:
 my $data = grandom(1000);

 # Get approximate binning:
 my $nbins = 20;
 my $binwidth = ($data->max-$data->min) / $nbins;

 my ($x, $y) = hist($data , $data->minmax, $binwidth);

 # Make a histogram of that data in 20 bins:
 my $fudgefactor = 1.1;

 $pl->histogram($data, $nbins,
 BOX => [$x->minmax, 0, $y->max * $fudgefactor]);

The PDL Book

Page 121

 $pl->close;

Bargraph

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'bargraph.eps');

 # Generate some data:
 my @colors = qw(red orange yellow green blue purple);
 my $votes = random(scalar(@colors));

 # Normalize the votes
 $votes /= $votes->sum;

 # Make a barchart of the votes.
 $pl->bargraph(\@colors, $votes);

 $pl->close;

The PDL Book

Page 122

Bargraph color and bar height

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'bargraph2.eps');

 # Generate some data:
 my @colors = qw(red orange yellow green blue purple);
 my $votes = random(scalar(@colors));

 # Normalize the votes
 $votes /= $votes->sum;

 # Make a barchart of the votes.
 $pl->bargraph(\@colors, $votes,
 COLOR => 'BLUE',
 BOX => [0, scalar(@colors), 0, 1.1 * $votes->max]
);

 $pl->close;

The PDL Book

Page 123

Bargraph with labelling

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'bargraph3.eps');

 # voting on letters:
 my @letters = ('a' .. 'z');
 my $votes = random(0 + @letters);

 # Normalize the votes
 $votes /= $votes->sum;

 # Make a barchart of the votes.
 $pl->bargraph(\@letters, $votes,
 COLOR => 'LIGHTGOLDENROD',
 BOX => [0, scalar(@letters) , 0, 1.1 * $votes->max],
 MAXBARLABELS => 10
);

$pl->close;

The PDL Book

Page 124

Using the MEM device
Use the MEM device to:
 -- load an image and plot over that image
 -- plot to a custom windowing
device
 -- animated plots

The way the MEM device works, is that it needs an
 RGB or RGBA (RGB with alpha transparency)
buffer
 to write on top of.

Creating a MEM memory buffer

There are 2 drivers which handle the MEM device, mem and memcairo.
 mem is for plain RGB.
memcairo can handle transparency values.

 use PDL;
 ## creating the mem device buffer ##

 # the mem device
 # Allocate the buffer for plain rgb
 my $buffer = zeroes(byte, 3, $width, $height);

 # Create the PLplot object
 my $pl = PDL::Graphics::PLplot->new(
 DEV => 'mem',
 MEM => $buffer
);

 ## For the memcairo device which handles tranparencies ##

 # Allocate the buffer
 my $buffer = zeroes(byte, 4, $width, $height);

The PDL Book

Page 125

 # Create the PLplot object
 my $pl = PDL::Graphics::PLplot->new(
 DEV => 'memcairo',
 MEM => $buffer
);

Plotting over an image with the MEM device

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';
 use PDL::IO::Pic;

 # Load an image
 # (has dims 3 x width x height)
 my $pic = rpic('earth.jpg');

 # Flip the y axis
 $pic = $pic->slice(':,:,-1:0:-1');
 # Whiten the image a bit
 $pic = 127 + $pic / 2;

 my $pl = PLplot->new(DEV => 'mem',
 MEM => $pic);

 # Plot a quadratic curve over the image
 my $x=zeroes(51)->xlinvals(-10, 10);
 $pl->xyplot($x, $x**2);
 $pl->close;

 # flip the y axis back and save the image
 $pic = $pic->slice(':,:,-1:0:-1');
 wpic($pic, 'earth_plot.png');

The PDL Book

Page 126

Functional programming style examples
This section uses the functional programming style of the original C
 library examples.

Simple line plot and multiple windows demo x01

The PDL Book

Page 127

Multiple window and color map 0 demo x02

Polar plot demo x03

The PDL Book

Page 128

Log plot demo x04

Histogram demo x05

The PDL Book

Page 129

Font demo x06

Font demo x07

The PDL Book

Page 130

3-d plot demo x08

Contour plot demo x09

The PDL Book

Page 131

Window positioning demo x10

Mesh plot demo x11

The PDL Book

Page 132

Bar chart demo x12

simple pie chart x13

The PDL Book

Page 133

Shade plot demo x15

plshade demo, using color fill x16

The PDL Book

Page 134

A simple stripchart with four pens x17

3-d line and point plot demo x18

The PDL Book

Page 135

Backdrop plotting of world, US maps. x19

Grid data demo x21

The PDL Book

Page 136

Simple vector plot x22

Displays Greek letters and mathematically interesting Unicode ranges x23

The PDL Book

Page 137

Unicode Pace Flag x24

Drawing polygons x25

The PDL Book

Page 138

Frequency Amplitude and Phase x26

Spirograph curves - epitrochoids, cycolids, roulettes x27

The PDL Book

Page 139

plmtex3, plptex3 demo x28

Plots using date / time formatting for axes x29

The PDL Book

Page 140

Alpha color values demonstration x30

Using pllegend including unicode symbols x33

The PDL Book

Page 141

Typesetting, greek letters, symbols
Use escape sequences to insert superscripts, subscripts, Greek
 letters, etc.

 #u - superscript until the next #d
 #d - subscript until the next #u
 #- - toggle underline mode
 #+ - toggle overline mode
 #fn - switch to normal (sans-serif) font
 #fr - switch to Roman (serif) font
 #fi - switch to italic font
 #fs - switch to script font

 # Use greek symbol rho for density:
 $pl->xyplot($radius, $density,
 YLAB => 'density #gr'
 # ...
);

Unicode is supported.

The PDL Book

Page 142

A basic typsetting example

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 # Generate a time series
 my $time = sequence(100)/10;
 my $sinewave = 5 * sin($time);

 # Create the PLplot object:
 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'Typesetting.eps');

 # Plot the time series
 $pl->xyplot($time, $sinewave,
 XLAB => '#fi time #fn [Hz#u-1#d]',
 YLAB => '#fiposition#fn [cm]',
 TITLE => '#frMass on Spring'
);

 # Close the PLplot object to finalize
 $pl->close;

The PDL Book

Page 143

psfrag

For LATEX typsetting, post-process eps images with psfrag.

 -- replaces simple strings with any valid LATEX text.
 -- ensures consistent fonts for both images and documents
 -- Do not use the pscairo device. Use ps or psc.

annotations and TEXTPOSITION
To add text to a plot, use the text method, specifying the
 TEXTPOSITION option. The
TEXTPOSITION takes either four or
 five arguments. The four-argument form places text outside the

viewport along one of its edges:

 $pl->text($string, TEXTPOSITION => [$side, $disp, $pos, $just]);

$side is one of 't', 'b', 'l', or 'r' indicating the top, bottom, left,
 or right edge

$disp is the number of character heights out from the edge

$pos is the position of the string's reference point along the
 edge of the viewport, from 0 to 1

$just indicates the location of the reference point of the string.

0 means the reference point is the string's left edge; 1 indicates
 the right edge

The five-argument form places the text within the viewport at an
 arbitrary position and slope:

 $pl->text($string, TEXTPOSITION => [$x, $y, $dx, $dy, $just]);

$x, $y are the location of the string's reference point within the
 clipping box

$dx, $dy together indicate the slope along which the text is
 drawn

$just indicates the location of the reference point of the string.

0 means the reference point is the string's left edge; 1 indicates
 the right edge

TEXTPOSITION 3 argument form

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'text1.eps');

 my $x = zeroes(100)->xlinvals(-3,3);
 my $y = $x**2;
 $pl->xyplot($x, $y);

 $pl->setparm(CHARSIZE => 1.2);
 # x label on the lower right
 $pl->text('Position x [m]',
 TEXTPOSITION => ['b', 3, 1, 1]);

The PDL Book

Page 144

 # y label on the upper left
 $pl->text('Potential Energy V [J]',
 TEXTPOSITION => ['l', 3.5, 1, 1]);

 # title at the center top
 $pl->text('Harmonic Oscillator',
 CHARSIZE => 2.5,
 TEXTPOSITION => ['t', 1.5, 0.5, 0.5]);

 $pl->close;

TEXTPOSITION 4 argument form

 #!/usr/bin/perl
 use strict;
 use warnings;
 use PDL;
 use aliased 'PDL::Graphics::PLplot';

 my $pl = PLplot->new(
 DEV => 'pscairo',
 FILE => 'text2.eps');

 # Plot a quadratic

The PDL Book

Page 145

 my $x = zeroes(100)->xlinvals(-3,3);
 my $y = $x**2;

 $pl->xyplot($x, $y, TITLE => 'SHO',
 XLAB => 'Position x [m]',
 YLAB => 'Potential V [J]');

 # annotate negative slope at (-2, 4)
 $pl->text('Slope is negative',
 TEXTPOSITION => [-1.8, 4.1, 1, -4, 0.5]);

 # annotate positive slope at (2, 4)
 $pl->text('Slope is positive',
 TEXTPOSITION => [1.9, 3.9, 10, 40, 1]);

 $pl->close;

Legends
PLplot does not have a command to create legends. We must make them
 ourselves. Legends are
only necessary when plotting discrete data sets.
 If possible, use color keys instead of constructing
legends by hand.

 #!/usr/bin/perl
 use strict;
 use warnings;

The PDL Book

Page 146

 use PDL;
 use PDL::Graphics::PLplot;

 my $pl = PDL::Graphics::PLplot->new(
 DEV => 'pscairo',
 FILE => 'legend.eps');

 my $x = zeroes(100)->xlinvals(-1.2, 1.2);
 my @colors = qw(BLACK GREEN BLUE);
 my @labels = qw(Linear Quadratic Cubic);
 my $legend_x = pdl(0.3, 0.5);
 my $legend_y = -0.5;

 # Plot linear, quadratic, and cubic curves with a legend
 for my $i (0..2) {

 $pl->xyplot($x, $x**($i+1), COLOR => $colors[$i]);

 $pl->xyplot($legend_x, pdl($legend_y, $legend_y),
 COLOR => $colors[$i]);

 $pl->text($labels[$i], COLOR => 'BLACK',
 TEXTPOSITION => [0.6, $legend_y, 1, 0, 0]);

 $legend_y -= 0.2;
 }

$pl->close;

The PDL Book

Page 147

3D Graphics with OpenGL
Introduction

 Figure 3.1: A 3D surface graph plotted using gnuplot,
 using the commands:

 set isosamples 30; splot [0:7] [0:7] sin(x)*sin(y).

There are lots of programs that let you plot so-called 3D surface graphs, such as the one shown in
Fig. 3.1. However, from the beginning, PDL's 3D graphics have had something different that we feel is
really useful: motion, or as we call it "twiddling".
 Dragging the 3D image with the mouse rotates the
image, at the
 speed allowed by your display hardware. This turned out to be quite useful for
displaying functions: the human eye is able to grasp the presented 3D surface much better when it
moves, especially in response to the mouse.

The PDL Book

Page 148

 Figure 3.2: The same 3D surface, plotted using the
 PDL::TriD module. The two different images were obtained
 literally by grabbing the image in the window opened by
 PDL and dragging it with the mouse to rotate.

Let's start with plotting the surface we showed using gnuplot in the beginning:

 pdl> use PDL::Graphics::TriD;
 pdl> $x = xlinvals(zeroes(30), 0, 7);
 pdl> imag3d [sin($x) * sin($x->dummy(0))];

This should produce a new window with the image seen in Figure 3.2.
 Notice that your console
window is now frozen: it is waiting for you to twiddle in the graphics window using the mouse and to
press q in that window once you're done.

If the above commands produce an error instead of a new window, it might be that your PDL wasn't
compiled with the option to include the 3D graphics library. (See the Perl Data Language
 web site at

The PDL Book

Page 149

http://pdl.perl.org for information on installing
 and using PDL.)

That above expression is a bit more difficult than the gnuplot version, and there's a simple reason for
that: gnuplot is primarily meant for plotting functions; PDL is meant for handling and plotting numerical
data. So to plot a function, we have to create the data for the function first which is a bit more difficult.

Now let's go through that part by part.

 pdl> use PDL::Graphics::TriD;

The first line simply tells Perl to load the
 PDL::Graphics::TriD module. The name comes from the
 fact
that you can't have parts of module names starting
 with numbers, unfortunately. The second line

 pdl> $x = xlinvals(zeroes(30), 0, 7);

creates a one-dimensional piddle with 30 elements that has linear values from 0 to 7:

 pdl> p $x
 [0 0.24137931 0.48275862 0.72413793 0.96551724.....

The xlinvals and the corresponding ylinvals and zlinvals are useful for exactly this purpose:
creating piddles of equally spaced values. The final line,

 pdl> imag3d [sin($x) * sin($x->dummy(0))];

is what draws the actual image. The expression inside, uses the variable $x for both the X and Y
coordinates, via a clever use of the dummy operation. (See chapter [chap_slice] for some
explanation). This results in a 2-dimensional piddle with the values for the Z coordinate. So far you've
already seen all this. And the final part, imag3d [vals] is the call that creates the 3D plot and
opens the new window for it. The brackets around the parameter may be slightly surprising: the 2-D
commands work well without those but there is a good reason for this, as you'll learn later on:
otherwise there would be a bad ambiguity.

Parametric Graphics
We alluded in the introduction that allowing

 pdl> imag3d $piddle;

could be ambiguous and should be written

 pdl> imag3d [$piddle];

if $piddle is intended to be the Z axis values of a rectangular 2D plot. Now is the time to find out
why. The simple truth is that

 pdl> imag3d $piddle;

is in fact legal code---if and only if the first dimension of $piddle has exactly three elements. As you
probably have already guessed, these three elements are X, Y and Z. So what you can do is pass
$piddle with shape [3,t,u] which is the same as a 2-dimensional [t,u] lattice with a 3-vector at
each point. This piddle will then be interpreted parametrically: the mesh will be drawn as a function of
$t and $u.

Let's have an example: a curve that is not possible to plot with just Z axis values, say the surface of a
torus, with colors coming from somewhere. First, set up the piddles and the parameter variables:

The PDL Book

Page 150

 use PDL;
 use PDL::Graphics::TriD;
 use PDL::NiceSlice;

 $torus = zeroes(3, 60, 20);

 $x = $torus((0));
 $y = $torus((1));
 $z = $torus((2));

 $t = xlinvals $x, 0, 6.28;
 $u = ylinvals $x, 0, 6.28;

Note that the coordinate separation can be done in just one line:

 ($x, $y, $z) = map { $torus(($_)) } 0..2;

Next, we color the torus. Let's put stripes on it:

 $r = (1 + sin(2*$t + $u))/2;
 $g = (1 + cos(2*$t + 2*$u))/2;
 $b = (1 + sin(2*$t + 3*$u))/2;

Then, we choose the outer and inner radii and put the coordinates into the slices. We'll let the torus lie
in the XY plane so the parametric coordinates can be easily derived.

 $r_o = 3;
 $r_i = 1;
 $x .= ($r_o + $r_i * sin($u)) * sin($t) ;
 $y .= ($r_o + $r_i * sin($u)) * cos($t);
 $z .= $r_i * cos($u);
 imag3d_ns $torus, [$r, $g, $b];

And here's our colorful torus!

The PDL Book

Page 151

It looks a bit more like a barrel because TriD automatically scales the axes but there it is. Note how
we use imag3d_ns to get the colors instead of the shaded version.

Now, there is more than one way to do it. If your data is not by default in the three-vector format (as
ours wasn't above), it is probably easier to do

 imag3d_ns [$x, $y, $z], [$r, $g, $b];

which will produce the same results. Also, we could concatenate the RGB piddles to form a single
[3,60,20] piddle that could be
 used without square brackets:

 $rgb = cat($r,$g,$b)->mv(-1,0); # $rgb is [3,60,20]
 imag3d_ns $torus, $rgb;

Now, since PDL does its best to make dimensions usable anywhere, we can easily plot several
parametrics of the same parameters at once, if we pack all the surfaces into a piddle of shape
[3,n_t,n_u,...]
 where the three periods in the end indicate the beginning of the extra
parameters.

For example, we can plot a family of shrinking toruses by adding an extra dimension into $torus:

 $cone = $torus->dummy(3, 4)->copy();
 $fac = axisvals($cone, 3);
 $cone *= $fac + 2;
 $cone(2) += 4 * $fac;
 imag3d $cone;

The PDL Book

Page 152

And further, if we want to distort them, it's perfectly possible:

 $x = $cone(0);
 $cone(2) += 0.1 * $x ** 2;
 imag3d $cone;

The PDL Book

Page 153

Any other kind of mutilation is also possible but we leave you to discovering the interesting things that
are possible by yourself, because we have to move to something else that's important to cover:
coordinate systems. So far, all the examples you've seen have happened in the Euclidean coordinate
system where the coordinates are specified as measures X, Y and Z on three orthogonal axes.

Or actually this is not true: in fact, we have used two kinds of coordinates, the explicit X, Y and Z
given in this section but in the preceding sections, only Z has been given and X and Y have been
assumed by the system from the context.

Of course, since PDL tries to follow "simple things simple, complicated things possible", it is possible
to override the default context.

Types of 3D Graphical Objects
So far, we've only been toying with surfaces. However, PDL can do much more. We can plot points;
here's a picture of two samples from different (overlapping) probability distributions, plotted with
different colors:

 use PDL::Graphics::TriD;

 $i = zeroes(8000);
 $which = random($i) < 0.5;
 $x = grandom($i) * (1 + $which);
 $y = grandom($i) * (0.5 + $which);
 $z = grandom($i) * (2 - $which);
 $x += $which * $y; $y += $which * $z; # Make it oblique
 points3d [$x, $y, $z], [$which, 0.5*(1-$which), 1-$which];

And the result:

The PDL Book

Page 154

A lot of fun things can be done with points but we'll go into that later.

Then, there are---of course---lines. As a fun demo of lines, let's plot a number of flow lines moving in
the Lorenz attractor. As you may know, the Lorenz attractor is described by

 dx
 -- = sigma (y - x)
 dt

 dy
 -- = (r - z) x - y
 dt

 dz
 -- = (y - b) z
 dt

where sigma=10, r=28 and b=8/3. Because we're just doing this as a simple demo, we'll use the
extremely unstable d=Delta method integration. We'll plot six trajectories that start close to each
other.

 use PDL::Graphics::TriD;
 $n = 500;
 $nstart = 0;
 $nc = 6;
 $delta = 0.015;
 # $x = pdl(1, 1, 1, 1, 1);
 # $y = pdl(1, 1, 1, 1, 1);
 # $z = pdl(1, 1.01, 1.02, 1.03, 1.04);
 $xs = zeroes($n, $nc);
 $ys = zeroes($n, $nc);
 $zs = zeroes($n, $nc);
 $x = -23 * ones($nc);
 $y = -2 * ones($nc);
 $z = 20 * ones($nc) + 0.02 * xvals($nc);
 $sigma = 10; $r = 28; $b = 8.0/3.0;
 for (-$nstart..$n-1) {
 if($_ >= 0) {
 $xs(($_)) .= $x;
 $ys(($_)) .= $y;
 $zs(($_)) .= $z;
 }
 $dx = $sigma * ($y - $x);
 $dy = ($r - $z)*$x - $y;
 $dz = $x*$y - $b * $z;

 $x += $delta * $dx;
 $y += $delta * $dy;
 $z += $delta * $dz;
 }
 $col = yvals(1, $nc) / ($nc-1);
 $tim = xvals($n) / ($n-1);
 line3d [$xs, $ys, $zs], [$col, $tim , 1-$col];

The PDL Book

Page 155

 Figure: Busy Lorenz Attractor

Unfortunately, this plot has too much stuff going on so it's difficult to see where the functions diverge
even though they have different colors at different times. This is an excellent time to change variables:
let's get rid of X and plot the time step instead:

 line3d [$tim, $ys, $zs], [$col, $tim , 1-$col];

This yields a much clearer plot of the chaotic behavior when the lines diverge with time.

The PDL Book

Page 156

In the latest versions of PDL it is possible to adjust the line width as well:

 line3d [$tim, $ys, $zs], [$col, $tim , 1-$col], {LineWidth => 10}

gives the same plot but with much thicker lines.

The PDL Book

Page 157

The basic rectangular surface you already saw in the preceding
 sections. It also has an option to turn
off the lines. There
 is also a command mesh3d similar to the imag3d surface
 which just draws the
surface as a wire mesh instead of a
 solid surface. On slow machines this can be of great help.

Finally, there are two commands for quickly painting strictly rectangular true color images: imagrgb
and imagrgb3d. This can be demonstrated by Tuomas J. Lukka's 4-liner:

 use PDL; use PDL::Graphics::TriD;$a=zeroes 300,300;$r=$a->xlinvals(-1.5,
 0.5);$i=$a->ylinvals(-1,1);$t=$r;$u=$i;for(1..30){$q=$r**2-$i**2+$t;$h=2
 ri+$u;$d=$r**2+$i**2;$a=lclip($a,$_*($d>2.0)*($a==0));($r,$i)=map{$_
 ->clip(-5,5)}($q,$h);}imagrgb[$a/30];

This, as odd as it may sound, plots a grayscale Mandelbrot. If you work your way through the code,
you'll see that it simply iterates the standard Mandelbrot iteration formula

 z <-- z**2 + C

where C is the original point. Then it uses lclip to keep the numbers in a reasonable range and
colors the points according to the iteration when the point crossed the distance sqrt(2) from the
origin. The piddle $a is two-dimensional so just like for coordinates, it is enclosed in an array ref. It is
also possible to use

 imag3gb [$r, $g, $b];
 imag3gb $colors;

where the RGB piddles are two-dimensional and $colors has three dimensions, the first of which is
of length three.

The command imagrgb3d does the same but allows the user to place the rectangle anywhere in
3-space. This is useful e.g. for putting an image underneath a plotted surface of the same function, as
we shall see in the next section.

More than one Image
If you have used the PDL PGPLOT interface for plotting multiple graphs then TriD is not going to
surprise you: the commands hold3d and release3d work just like their PGPLOT counterparts.
Before going further, however, let me remind you that for many plots, it is not necessary to explicitly
plot several points, lines, surfaces or whatever: it can be easier just to use extra dimensions, like we
used for the torus cone in the first section.

However, if you want to put objects of more than one type, or objects of more than one resolution on
the same graph, then you do need to do so explicitly. As an example we'll use some fractal mountain
code by Tuomas J. Lukka from the 3D Gallery. Unlike with the Mandelbrot that has a well-known
algorithm, this code we'd just better format clearly from the start (the parameters have also been
slightly modified and the code has been modified to plot all the iterations on top of each other).

 use PDL; # XXX FIX - LOOKS BAD.
 use PDL::Image2D;
 use PDL::Graphics::TriD;
 $k = ones(3,3) / 9;
 $a = 20;
 $b = $a*(random(2,2)-0.5);
 hold3d(); # Set the coordinate system: XXX hack!!! FIX TriD
 line3d pdl([[0, 0, 0,], [0, 0, 10]]);
 for (0..4) {
 if ($_ != 0) {
 $c = $b->dummy(0,2)->clump(2)->xchg(0,1)->

The PDL Book

Page 158

 dummy(0,2)->clump(2)->xchg(0,1)->copy;
 $c += $a*($c->random-0.5);
 $a /= 1.5;
 $b = conv2d($c,$k);
 }
 imag3d [xlinvals($b,0,1), ylinvals($b,0,1), $b + 2.0*$_], {Lines =>
0};
 }
 release3d();

Even laid out bare, this code is a mouthful with that big double dummy-clump-xchg thing in the
middle. But in fact the function is really simple: the dummy-clump-xchg thing simply doubles the
length of each dimension, copying each value to two consecutive locations. After doubling the
resolution, we add some noise from the random function (the magnitude of the noise is diminished
each time). Finally, we pull in PDL::Image2D for the conv2d routine that does 2-dimensional
convolutions (optimized for small kernels like ours). We use a 5x5 kernel to smooth our data at each
step by convolution. That's the numerical part, now here is
 the sequence of images created:

The PDL Book

Page 159

Putting it all together---cool hacks
Here's one where the original idea is by Robin Williams, done for the 3D Gallery. This gallery is
available in the PDL distribution in the file Demos/TriDGallery.pm. The idea is to put interesting scripts
that do a lot using just 4 lines of 72 characters. The crux of the idea is to use OpenGL points to
perform volume-like rendering. This is just a quick hack. However, the principles
 are interesting
enough that we thought you might enjoy them. Let's start with a function of three variables, whose
zeroes are a sphere and an ellipsoid inside the sphere, with the Y axis slightly distorted to form a
parabola with the Z axis:

 sub f {
 my($x, $y, $z) = @_;
 $y = $y + 0.04 * $z**2;
 return (($x**2 + $y**2 + $z**2) - 100) *
 ((2*$x**2 + 4*$y**2 + 4*$z**2) - 100);
 }

Note here that we can't use the += operator for $y since below we use the same piddle for the three
coordinates (with a simple dummy transformation). Now, we want to picture approximately where the
function crosses zero, but since there are two separate zero surfaces we can't just use an algorithm
that finds a zero and creates an isosurface. Besides, an isosurface renderer wouldn't be able to show
both the sphere and the ellipsoid simultaneously. So rather, let's first calculate the sign of the function
in a 50x50x50 lattice. The radius of the sphere is sqrt(100)=10 so we make the coordinate system
slightly larger.

 use PDL::Graphics::TriD;
 $x = xlinvals(zeroes(float,50), -11, 11);
 $f = f($x, $x->dummy(0), $x->dummy(0)->dummy(0));
 $sign = byte($f>0);

Now that we have the sign, why don't we simply find the set of points where the sign has changed. It
is simplest to do this over just one dimension:

 $df = ($sign(0:-2) != $sign(1:-1));
 points3d whichND($df); # for PDL-2.4.10

And indeed, we get a rotatable set of points in 3-space that are in the shape of a sphere with an
ellipsoid inside, slightly distorted, just as ordered.

The PDL Book

Page 160

This is not yet a good picture: there is a hole in the point set where the surface is parallel to the X
axis, naturally, since there there is no difference between the sigh between the points next to each
other on X axis.

NOTE: For PDL-2.4.9 and earlier, you'll need to use points3d [whichND($df)]; since
previous to PDL-2.4.10 whichND returned a list of piddles in list context. That behavior is now
deprecated.

To do a more complete job, we need to compare the signs not only along X but other dimensions as
well. This is possible due to the wonderful invention by Robin Williams:

 $a = $sign;
 foreach (1,2,4) {
 $t=($a(0:-2)<<$_);
 $t+=$a(1:-1);
 $a=$t->mv(0,2);
 }
 points3d [whichND(($a != 0) & ($a != 255))];

It's a bit cryptic but truly beautiful so bear with us while we go through it. The loop is executed thrice,
once for each dimension. In the beginning, we know that all the values in $a
 are either 0 or 1. The

The PDL Book

Page 161

first line of the loop takes a slice from $a, leaving the last element of dimension one out and shifts if
by the loop index $_. The second line takes another slice, this time leaving out the first element and
adds it to the first. Finally, the dimensions are rotated for the next invocation.

Choosing the shifts to be 1,2,4 is the key: this way after the first round, the piddle contains values
0,1,2,3 after the second it contains 0...15 and after the third, 0..255. None of the shifts shift anything
on top of each other so the plus operation could be replaced with a bitwise or.

So after the loop, we have a three-dimensional piddle with one index less in each dimension, and
each value in that piddle contains in its 8 bits the 8 corners of a small cube. Finally, to find whether
the function crosses zero at that cube, we simply check whether all the bits are equal, i.e. whether the
number is 255 or 0 and if it isn't we know the function changes sign.

The image quality can be slightly improved by removing the Moire effect through randomization:

 points3d (map {$_+$_->float->random} whichND(($a != 0) & ($a != 255)))

The PDL Book

Page 162

Now, to further improve image quality we could add different-color pixels but that would require alpha
blending to the OpenGL parameters and this would get into complications we don't necessarily want
here. So now we're going to KISS*
 this topic away and move to the next one.

 * Keep It Simple, Stupid
=head1 The PDL Preprocessor

The PDL PreProcessor, or PDL::PP, is PDL's secret weapon. With
 PDL::PP, you can quickly and
easily implement new "primitive" compiled
 C-language PDL functions that follow the PDL threading
rules, without
 having to write tedious loops or glue code. You can write simple
 computations with zero
or more active dimensions (see PDL::Book::Threading), write functions that contain a mix of Perl
 and
compiled code, and/or generate output PDLs that remain linked to
 the source PDL in trivial or
nontrivial ways.

The PDL::PP module is a preprocessor that accepts a metalanguage
 ("PP") and emits both Perl and
XS code. PDL::PP is not generally
 invoked directly by you, the coder, at run time -- it is invoked as

part of your module's build process (via ExtUtils::MakeMaker or Module::Build) or by Inline::Pdlpp as
part of inline compilation of snippets of PP. I will use the latter case throughout this documentation
 as
it allows me to give full copy-and-paste examples.

Note that the vast majority of these examples are tested and should work by
 simply pasting them

The PDL Book

Page 163

directly into a text editor. The only correction you
 will need to make is to ensure that the __END__ and
__Pdlpp__ markers
 are flush against the left edge, i.e. there are no spaces before the
 underscores.

After reading this introduction, you should have a firm grasp on the
 basics of using PDL::PP and the
full documentation in the PDL::PP man page should be fairly easy to follow.

Basics
In this section I discuss the basics of writing PP code using pp_def.
 I will use Inline::Pdlpp for all of
my examples, including this first
 one. If you need help getting Inline::Pdlpp to work, see Appendix A.

The contents of the Inline::Pdlpp is no more than a Perl script that
 calls special functions defined in
the PDL::PP module. The final
 result of this Perl script are a Perl module (.pm file) and a Perl

extension (.xs file). The latter gets expanded to C code and compiled
 to produce XSUBs that
ultimately end up as methods in the PDL package.

pp_def accepts a collection of parameters that describe both the way the new method should
interact with the threading engine (e.g.
 its dimensional signature and which data types it should
support natively),
 and also the code for the core of the method.

First Example

Let's begin with a variation on the canonical Hello World.

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';
 my $a = sequence(10);
 $a->printout;

 __END__

 __Pdlpp__

 pp_def('printout',
 Pars => 'a()',
 Code => q{
 printf("%f\n", $a());
 },
);

If you run that script, after a short pause you should see output that looks
 like this:

 > perl my_script.pl
 0.000000
 1.000000
 2.000000
 3.000000
 4.000000
 5.000000
 6.000000
 7.000000
 8.000000
 9.000000

During that pause, Inlne took the text below the __Pdlpp__ marker and
 sent it off to Inline::Pdlpp,

The PDL Book

Page 164

which generated a source file and a
 Makefile. Inline took it from there, compiling the function and then
loading
 the newly compiled module into your current Perl interpreter. That module defined the
 function
PDL::printout, which the script ran a couple of lines below the use Inline 'Pdlpp'. The cool
part about Inline is that it caches the
 result of that build process and only rebuilds if you change the
part below
 the __Pdlpp__ marker. You can freely play with the Perl part of the file
 and it will use the
same cached Pdlpp code. Now that you understand what
 Inline did, let's take a closer look at how I
actually defined the printout function.

PDL::PP is a Perl module that you use to generate the XS and Perl code
 for your PDL functions. This
means that everything below the __Pdlpp__
 marker is actually a plain Perl script, except that you
don't need to use PDL::PP because Inline::Pdlpp took care of that for you.

In order to generate your XS code, you call one of the
 many functions defined in PDL::PP. All of these
are discussed in the PDL::PP
 documentation, and in this chapter I will focus entirely on PDL::PP's

workhorse: pp_def. In the above example, the code of interest is this:

 pp_def('printout',
 Pars => 'a()',
 Code => q{
 printf("%f\n", $a());
 },
);

The first argument to pp_def is the name of the function you want to
 create. After that, you pass a
number of key/value pairs to tell PDL::PP
 precisely what sort of function you are trying to create. The
bare minimum
 for a normal computational function (as opposed to a slice function, for
 which there is
sadly no documentation) is the Pars key and the Code
 key.

The Pars key specifies the piddle arguments for your function. It
 accepts a simple Perl string with the
argument names and dimensions, delimited by semicolons. In the example I only use a single
argument, but
 you can specify multiple input and output arguments, and you can even
 restrict (that is,
force a coercion in) their data types. Note that the
 parentheses that follow the a are important and
cannot be omitted. They
 might make the statement look like a function, but we'll see soon why they

are important.

The Code key specifies a Perl string with a quasi-C block of code that I
 am going to call PP code. This
Perl string gets thoroughly transformed by
 PDL::PP and combined with other keys to produce the XS
(and eventually C)
 code for your function. You can think of PP code as being regular C code with a
few special macros and notations. The first example already
 demonstrates one such notation: to
access the value in a piddle, you must
 prefix the name with a dollar-sign and you must postfix it with
parentheses.
 In the next section we'll see just what sort of arguments you can put in
 those
parentheses.

Best Practice: Use q{ } for Code Sections

When creating a string for the Code key (as well as the BadCode, BackCode,
 and
BadBackCode keys), I strongly recommend that you use Perl's q quote
 operator with curly
braces as delimiters, as I have used in the examples so
 far. Perl offers many ways to quote
long blocks of text. Your first impulse
 may be to simply use normal Perl quotes like so:

 Code => ' printf("%f\n", $a()); ',

For longer lines, you would probably pull out the ever-useful heredoc:

 Code => <<EOCode,

 printf("%f\n", $a());

The PDL Book

Page 165

 EOCode

I have two reasons for recommending Perl's q operator. First,
 it makes your Code section look
like a code block:

 Code => q{
 printf("%f\n", $a());
 }

Second, PDL::PP's error reporting is not the greatest, and if you miss a
 curly brace, Perl's
interpreter will catch it as a problem. This is not
 the case with the other delimiters. In this
example, I forgot to include a
 closing brace:

 Code => <<'EOCode',
 printf("Starting\n");

 for(i = 0; i < $SIZE(n); ++i) {
 printf("%d: %f\n", i, $a(n => i));

 printf("All done\n");
 EOCode

The C compiler will croak on the above example with an error that is likely
 to be obscure and
only tangentially helpful. However, Perl will catch this
 typo at compile time if you use q{ }:

 Code => q{
 printf("Starting\n");

 for(i = 0; i < $SIZE(n); ++i) {
 printf("%d: %f\n", i, $a(n => i));

 printf("All done\n");
 },

Also note that I do not recommend using the qq quoting operator. Almost
 all the PDL::PP
code strings delimit piddles using dollar-signs (like $a()
 above) and you must escape each
one of these unless you want Perl to
 interpolate a variable for you. Obviously qq has its uses
occasionally,
 but in general I recommend sticking almost exclusively with q.

Let's now expand the example so that the function takes two arguments.
 Replace the original pp_def
with this slightly more interesting code:

 pp_def('printout_sum',
 Pars => 'a(); b()',
 Code => q{
 printf("%f + %f = %f\n", $a(), $b(), $a() + $b());
 },
);

Change the line that reads

 $a->printout;

to the following two lines:

 my $b = $a->random;
 $a->printout_sum($b);

The PDL Book

Page 166

and you should get output that looks like this:

 > perl two-args.pl
 0.000000 + 0.690920 = 0.690920
 1.000000 + 0.907612 = 1.907612
 2.000000 + 0.479112 = 2.479112
 3.000000 + 0.421556 = 3.421556
 4.000000 + 0.431388 = 4.431388
 5.000000 + 0.022563 = 5.022563
 6.000000 + 0.014719 = 6.014719
 7.000000 + 0.354457 = 7.354457
 8.000000 + 0.705733 = 8.705733
 9.000000 + 0.827809 = 9.827809

The differences between this and the previous example are not complicated
 but deserve some
discussion. A cosmetic difference is that I have used a
 different name for the function, but a more
substantial difference is that
 the function now takes two arguments, a() and b(), as specified by the
Pars key. The Code block makes use of these two piddles, printing out
 the two and their sum. Notice
that I access the value in a with the
 expression $a(), and the value in b with $b(). Also notice that I

can use those values in an arithmetic expression.

Returning Values

The examples I have used have all demonstrated their behavior by printing
 out their results to
STDOUT. If you are like me, you will be glad to know
 that you can use printfs throughout your PP
code when it comes time to
 debug, but these functions would be far more useful if they returned
piddles
 with the calculated results. Fortunately, PDL::PP functions are really just
 C functions in
disguise, and ultimately the data are passed around in C
 arrays, essentially by reference. This means
that you can modify incoming
 piddles in-place. For example, this function increments a piddle:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';
 my $a = sequence(10);
 print "a is initially $a\n";
 $a->my_inc;
 print "a is now $a\n";

 __END__
 __Pdlpp__
 pp_def('my_inc',
 Pars => 'a()',
 Code => q{
 $a()++;
 },
);

When I run that, I get this output:

 a is initially [0 1 2 3 4 5 6 7 8 9]
 a is now [1 2 3 4 5 6 7 8 9 10]

If you want to modify a piddle in-place, PDL provides multiple
 mechanisms for handling this,
depending on what you are trying to
 accomplish. In particular, there are ways to handle the inplace

The PDL Book

Page 167

flag for
 a given piddle. But I'm getting a bit ahead of myself. Generally speaking,
 you shouldn't modify
a piddle in-place: you should return a result instead.
 To do this, you simply mark the argument in the
Pars key with the [o]
 qualifier. Here, I show how to return two arguments:

 pp_def('my_sum_and_diff',
 Pars => 'left(); right(); [o] sum(); [o] diff()',
 Code => q{
 $sum() = $left() + $right();
 $diff() = $left() - $right();
 },
);

This function takes $left and $right as input arguments (in that order)
 and it outputs $sum and
$diff (also in that order, as a Perl list).
 For example, we could run the above pp-code with Perl code
like this:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';
 my $left = sequence(10);
 my $right = $left->random;

 my ($sum, $diff) = $left->my_sum_and_diff($right);

 print "Left: $left\n";
 print "Right: $right\n";
 print "Sum: $sum\n";
 print "Diff: $diff\n";

The functions defined using pp_def actually allow for you to pass in
 the output piddles as arguments,
but I'll explore that in one of the
 exercises rather than boring you with more details.

Exercise Set 1

So far I have shown you how to write basic PP code that prints values to the
 screen or returns values.
The great thing about PDL::PP is that this code
 actually allows for two different calling conventions,
and it Does What You
 Mean when you give it all manner of piddles. Rather than bore you to death

with more prose, I am going to give you a couple of exercises. Solutions to
 these exercises are in
Appendix B.

1. Slices

Working with printout_sum, replace $b with a slice from some other
 piddle. Does it do
what you expect?

2. Threading

With printout_sum, what if you replace $b with a two-dimensional
 piddle that is
thread-compatible with $a? Try to guess the order of the
 output that you'll get before running
the example. Did you guess correctly?

3. Orthogonal Piddles

What if $a has dimensions M and $b has dimensions (1, N) with printout_sum? What
about my_sum_and_diff?

4. Varying Input Order

The PDL Book

Page 168

The PP code that I present puts all the output piddles at the end of the Pars section. What
happens if you move them to the beginning of the
 section instead of the end?

5. Supplying Outputs in the Function Call

You can call pp_defined functions by supplying all the arguments to the
 function. For
example, instead of calling my_sum_and_diff like this:

 # No output piddles in function call
 my ($sum, $diff) = $left->my_sum_and_diff($right);

you can call it like this:

 # All in function call, both outputs null
 my ($sum, $diff) = (PDL::null, PDL::null);
 $left->my_sum_and_diff($right, $sum, $diff);

What is the return value of this sort of invocation? How does the function
 call change if you
alter the Pars order? There's a good reason for this
 capability, can you guess why PDL lets
you do this?

Higher Dimensional Functions
So far I have shown how to write rudimentary functions that accept
 zero-dimensional piddles. In this
section, I will explain how to write
 functions that accept higher-dimensional data.

Specifying Dimensions and Using Explicit Looping

Exercises 1.2 and 1.3 demonstrate that PDL::PP automatically loops over the
 values in a piddle for
you. What if you want to do some sort of aggregate
 behavior, such as computing the sum of all the
values in a piddle? This
 requires more fine-grained control of the code over which PDL::PP loops.

Our discussion begins by looking more closely at the Pars key. When you
 have a parameter list like
'input(); [o] output()', you are telling PDL::PP
 that you want it to present the data from the
input and output piddles as
 scalars. The code you specify in the Code key gets wrapped by a couple
of
 C for loops that loop through higher dimensions, something that we call threading. There are
many calculations you cannot do with this simplistic
 representation of the data, such as write a Fourier
Transform, matrix-matrix
 multiplication, or a cumulative sum. For these, you need PDL::PP to
represent
 your data as vectors or matrices.

Note: I am about to cover some material that makes sense once you get it,
 but which is very easy to
mis-interpret. Pay close attention!

To tell PDL::PP that you want it to represent the data as a vector, you
 specify a dimension name in
the Pars key, such as

 Pars => 'input(n); [o] sum()'

Notice that I have put something within the parentheses of the input piddle, n. That means that I want
PDL::PP to represent the input as a vector with
 one dimension and I am going to refer to its (single)
dimension by the name n. Then, to access the third element of that vector, you would write
$input(n => 2). (Element access uses zero-offsets, just like Perl and
 C array access.) To sum all
the values in the vector and store the result in
 the output variable, you could use a C for-loop like so:

 int i;
 $sum() = 0;
 for (i = 0; i < $SIZE(n); i++) {
 $sum() += $input(n => i);
 }

The PDL Book

Page 169

Here, $SIZE(n) is a PDL::PP macro that returns the length of the vector
 (or more precisely, the size
of the dimension that we have called n).

Best practice: optimize for clarity when using $SIZE

When I first encountered the $SIZE PDL::PP macro, I assumed it produced
 slow code. It turns
out that it replaces itself with a direct variable
 access, which is quite fast. As a general rule
regarding $SIZE, optimize
 for clarity. The only exception is that, as of this writing, you cannot

use $SIZE within a direct memory access, as I discuss next.

Wart: no parenthesized expressions within direct memory access

Due to a current limitation in PDL::PP, you cannot use parenthesized
 expressions within a
memory access. For example, this will fail to compile
 and will throw a most obscure error:

 $sum() += $input(n => (i-1));

The reason is that the parser isn't a real parser: it's just a series of
 regular expressions. It
takes everything up until the first closing parenthesis and
 doesn't realize that you put i-1 in
parentheses. This means that these
 also fail:

 $sum() += $input(n => calculate_offset(i));
 $sum() += $input(n => $SIZE(n)-1);

You can use expressions that do not involve parentheses, even expressions
 involving
arithmetic, so you can achieve the same ends with these
 work-arounds:

 long calc_off = calculate_offset(i);
 $sum() += $input(n => calc_off);

 long N = $SIZE(n);
 $sum() += $input(n => N-1);

I intend to improve this soon so that at least parenthesized expressions will
 work in memory
access statements. However, fixing access statement parsing
 to allow $SIZE(n) may require
a more substantial overhaul of the parser
 and may not happen any time soon. Sorry.

PDL::PP also provides a convenient short-hand for this sort of loop:

 $sum() = 0;
 loop (n) %{
 $sum() += $input();
 %}

Here, I declare a PDL::PP loop block. Standard blocks in C (and in Perl) are
 delimited with curly
braces, but the loop block is delimited with %{ and %}. You end up with code that is functionally
identical to the previous
 method for writing this sum, but you can use fewer keystrokes to do it.

Putting this all together, here is a complete example that performs a sum
 over a vector:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';
 my $a = sequence(10);
 print "a is $a and its sumover is "
 , $a->my_sumover, "\n";

 my $b = sequence(3, 5);

The PDL Book

Page 170

 print "b is $b and its sumover is "
 , $b->my_sumover, "\n";

 __END__

 __Pdlpp__

 pp_def('my_sumover',
 Pars => 'input(n); [o] sum()',
 Code => q{
 $sum() = 0;
 loop (n) %{
 $sum() += $input();
 %}
 }
);

That gives the following output:

 a is [0 1 2 3 4 5 6 7 8 9] and its sumover is 45
 b is
 [
 [0 1 2]
 [3 4 5]
 [6 7 8]
 [9 10 11]
 [12 13 14]
]
 and its sumover is [3 12 21 30 39]

As the calculation on $a shows, when you perform the calculation on a
 one-dimensional piddle, it
returns a single result with the sum of all the
 elements. The calculation on $b treats each row as a
vector and performs
 the calculation on each row.

Matrix-Matrix Multiplication

Let's look at another example, matrix-matrix multiplication. (You remember
 how to do matrix-matrix
multiplication, right? No? Brush-up on http://en.wikipedia.org/wiki/Matrix_multiplication.) How
 would
we write such an algorithm using PDL::PP? First, the Pars section
 needs to indicate what sort of
input and output
 piddles we want to handle. The length of the row of the first matrix has to
 be equal to
the length of the column of the second matrix. The output matrix
 will have as many rows as the
second matrix, and as many columns as the first
 matrix. Second, we need to loop over the entire
output dimensions. Altogether,
 my first guess at this function looked like this:

 pp_def('my_matrix_mult',
 Pars => 'left(n,m); right(m,p); [o] output(n,p)',
 Code => q{
 loop (n) %{
 loop (p) %{
 loop (m) %{
 $output() = $left() * $right();
 %}
 %}
 %}
 },

The PDL Book

Page 171

);

"Wait," you say, "That's it? It's that simple?" Yep. Once you figure out the
 relationship of the
dimension sizes, the threading engine just Does What You
 Mean. (As you'll see, I got the dimensions
wrong, but it'll be a quick fix.)
 You can run that with this Perl code:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';
 my $left = sequence(2,4);
 my $right = sequence(4, 5);
 print "$left times $right is ", $left->my_matrix_mult($right);

and that gives this output:

 [
 [0 1]
 [2 3]
 [4 5]
 [6 7]
]
 times
 [
 [0 1 2 3]
 [4 5 6 7]
 [8 9 10 11]
 [12 13 14 15]
 [16 17 18 19]
]
 is
 [
 [18 21]
 [42 49]
 [66 77]
 [90 105]
 [114 133]
]

Oops! You can see that PDL considers the first argument to the number of
 columns, not the number
of rows! I'll let you fix that in an exercise.

Threadloops

PDL::PP also has the threadloop construct, which lets you declare the
 code over which PDL
should thread, and the code that should come before
 and after the thread loop. Here's a simple
example demonstrating the threadloop construct in conjunction with the loop construct:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 # Run the code on a 2x4 matrix:
 sequence(2,4)->my_print_rows;

The PDL Book

Page 172

 # Run the code on a 3x4x5 matrix:
 sequence(3,4,5)->my_print_rows;

 __END__

 __Pdlpp__

 pp_def('my_print_rows',
 Pars => 'in(n)',
 Code => q{
 printf("About to start printing rows\n");
 int row_counter = 0;
 threadloop %{
 printf(" Row %3d: ", row_counter);
 loop(n) %{
 printf("%f, ", $in());
 %}
 printf("\n");
 row_counter++;
 %}
 printf("All done!\n");
 },
);

A snippet of that output looks like this:

 About to start printing rows
 Row 0: 0.000000, 1.000000,
 Row 1: 2.000000, 3.000000,
 Row 2: 4.000000, 5.000000,
 Row 3: 6.000000, 7.000000,
 All done!
 About to start printing rows
 Row 0: 0.000000, 1.000000, 2.000000,
 Row 1: 3.000000, 4.000000, 5.000000,
 ...
 Row 19: 57.000000, 58.000000, 59.000000,
 All done!

There are two important aspects to remember about threadloops. First, you
 must not put anything
between the threadloop and the %{ except
 white space. For example:

 /* ok */
 threadloop %{

 /* ok */
 threadloop
 %{

 /* BAD */
 threadloop /* outer loop */ %{

As you can see, the parser for the PDL PreProcessor is not terribly
 sophisticated. It's mostly a pile of

The PDL Book

Page 173

regular expressions, and 99% of the time, it
 does exactly what you need.

Another potential area of confusion can arise if you have something that
 looks like a threadloop in
your code, but you've commented it out:

 ...
 #if 0 /* skip this for now */

 threadloop %{
	 printf(" Row %3d: ", row_counter);
	 loop(n) %{
		 printf("%f, ", $in());
	 %}
	 printf("\n");
	 row_counter++;
 %}

 #endif /* skipped block of code */
 ...

The problem is that if you do not indicate where the threadloop is supposed to
 go, PDL wraps all your
code in the threadloop logic. However, if PDL sees what
 looks like a threadloop block, it assumes that
you want to be more precise about
 where the threadloop logic goes. In fact, it even inserts the
threadloop logic
 where you indicated it was to go, but this will eventually get discarded by the
 C
preprocessor thanks to the #if 0 block. This means that the code that
 contains the loop(n) block,
below the #endif, does not have the threadloop
 logic that it needs to do its job, and you will get
erroneous results.

The easiest fix for this? In addition to commenting out the blocks, put
 something (anything) between
the text threadloop and the percent block %{. As already discussed, this will always prevent PDL
from identifying
 the threadloop, which is what you need it to temporarily do in this case.

It may seem that threadloops are bad things to be avoided, but threadloops
 are particularly useful if
you are writing a function that needs
 access to a system resource that is costly to allocate with each
iteration. For
 that sort of operation, you allocate it before entering the threadloop and
 de-allocate it
after leaving:

 Code => q{
 /* allocate system resource */
 threadloop %{
 /* use system resource */
 %}
 /* Free system resource */
 },

They are also handy if you need to perform a particularly expensive calculation
 once each time the
function is invoked.

A Complex Example

To put this all together, I am going to consider writing a PDL::PP function
 that computes the first
numerical derivative of a time series. You can read
 about finite difference formulas here:
http://en.wikipedia.org/wiki/Numerical_differentiation. Normally, finite
 difference formulas result in a
numerical derivative with one less point
 than the original time series. Since I have not discussed how
to
 set a return dimension with a calculated size, I'm going to use a slightly
 modified numerical
derivative. The derivatives associated with the first
 and last points will be calculated using the right

The PDL Book

Page 174

and left finite
 differences, respectively, whereas the points in the middle will be calculated
 using a
centered-difference formula. I'll run this function on the sine
 wave and compare the results with the
actual derivative of the sine wave,
 which is the cosine wave. I've marked a couple of points in the
code for
 the discussion that follows.

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 # Create some sine data:
 my $h = 0.3;
 my $sine = sin(sequence(10) * $h);
 my $derivative = $sine->my_first_derivative($h);
 my $cosine = cos(sequence(10) * $h);

 print "The difference between the computed and actual derivative:\n"
 , $derivative - $cosine, "\n";

 __END__

 __Pdlpp__

 pp_def('my_first_derivative',
 Pars => 't_series(n); step(); [o] derivative(n)',
 Code => q{
 int N = $SIZE(n);
 threadloop %{
 /* Derivative for i = 0 */
 $derivative(n => 0)
 = ($t_series(n => 1) - $t_series(n => 0))
 / $step();
 /* Derivatives for 1 <= i <= N-2 */
 /* (Point 1) */
 loop (n) %{
 /* Skip the first and last elements (Point 2) */
 if (n == 0 || n == N - 1) {
 /* (Point 3) */
 continue;

 }
 /* (Points 4 and 5) */
 $derivative()
 = ($t_series(n => n+1) - $t_series(n => n-1))
 / 2.0 / $step();
 %}
 /* Derivative for i = N-1 */
 $derivative(n => N-1)
 = ($t_series(n => N-1) - $t_series(n => N-2))
 / $step();
 %}
 },
);

The PDL Book

Page 175

The output on my machine looks like this:

The difference between the computed and actual derivative:

 [-0.014932644 -0.0142657 -0.012324443 -0.0092822807 -0.0054109595
 -0.0010562935 0.0033927281 0.0075386874 0.011011238 0.077127808]

These differences are fairly small, four times smaller than the (fairly
 large) step size. And if I decrease
the size of $h by 2, these errors
 should get smaller by a factor of 4 except at the endpoints. Not bad.

But what we really care about is the code, which uses a number of tricks I
 haven't discussed yet. Let's
run through each point in turn.

point 1, a sub-optimal example

The code within this loop does not actually compute results for all indices
 from zero to N-1.
As such, I should use a for loop that starts from 1 and
 runs to N-2. I dislike it when bad
examples are used for pedagogical reasons,
 but that's what I'm going to do here. Sorry.

point 2, a useful register

The actual C code that gets generated by the loop construct creates a
 register variable called
n within the scope of the loop block. Thus, we
 can access the current value of n from within
the loop by simply using
 that value in our code. I do that in this if statement and in the
memory
 accesses later.

point 3, C looping commands

The loop construct creates a bona fide for loop, so you can use break and continue, just
like in a real C for loop.

point 4, explicit dimension values within a loop block

When we loop over n, it saves you keystrokes in your memory access by
 making it
unnecessary to specify n. This is exploited when I say $derivative() without specifying a
value for n. However, we can
 override that value for n within the loop by explicitly specifying it,
which is what I do with $t_series(n = n-2)>.

point 5: which n?

Look closely at the access statements for $t_series:

 $t_series(n => n-1)

PDL::PP parses this as

 $ <pars-variable-name> (<dimension-name> => <value>,
 <dimension-name> => <value>,
 ...
)

and replaces it with a direct array access statement. In this statement,
 the n on the left side of
the fat comma (the =>) is the name of
 the dimension. The n on the right side of the fat comma
is part of a C
 expression and is not touched by PDL::PP. That means that the n on the
 right
side refers to the C variable n. This makes two uses of the same
 token, n, which can be a bit
confusing. I'm not suggesting that this is
 a best practice, but it is a possible practice which may
be useful to you.
 So now you know.

In the above section I have explained how to use loop and threadloop
 to control how PDL::PP
presents data to your code, and to control which
 sections of code PDL::PP threads over. I have also
shown you how to access
 specific memory locations when you have vector representations of your
data.

The PDL Book

Page 176

Exercise Set 2

1. Matrix Multiplication, Fixed

I noted above that my code for the matrix multiplication is incorrect and I
 explained why.
Changing nothing more than the Pars section, fix this code
 so that it performs proper matrix
multiplication.

2. Threading Engine Tricks

The function my_sumover uses a loop construct, so it only operates on
 individual rows.
What if you wanted to perform the sum an entire matrix?
 Using Perl level operations, find a
way to manipulate the incoming piddle
 so that you can call my_sumover to get the sum over
the entire matrix.
 Bonus points if the same technique works for higher dimensional piddles.

3. Cumulative Sum

Modify my_sumover to create a function, my_cumulative_sum,
 which returns the
cumulative sum for each row. By this I mean that it would
 take the input such as (1, 2, 3, 4)
and return (1, 3, 6, 10), so that each
 element of the output corresponds to the sum of all the
row's elements up
 to that point.

4. Full Cumulative Sum

Take your code for my_cumulative_sum and modify it so that it returns the
 cumulative sum
over the entire piddle, regardless of the piddle's dimension.
 Your resulting code should not
have any loop constructs.

Tips
These are a couple of things I have learned which help me make effective use
 of PDL::PP, but which
did not sensibly fit elsewhere.

Best Practice: use pp_line_numbers

PDL::PP includes a brand new function in PDL 2.4.10 called pp_line_numbers.
 This
function takes two arguments: a number and a string. The number should
 indicate the actual
line in your Perl source file at which the string starts,
 and the function causes #line directives
to be inserted into the string.
 This is ENORMOUSLY helpful when you have a syntax error.
Without it, the
 syntax error is reported as coming from a given line in your XS file, but
 with it
the error is reported as coming from your own source file.

I will illustrate this with an example that gave me great trouble while I
 was preparing this text:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 # Run the code on a 2x4 matrix:
 sequence(2,4)->my_print_rows;

 __END__

 __Pdlpp__

 pp_def('my_print_rows',
 Pars => 'in(n)',
 Code => q{
 printf("About to start printing rows\n");
 int row_counter = 0;
 threadloop %{

The PDL Book

Page 177

 printf(" Row %3d: ", row_counter);
 loop(n) %{
 printf("%f, ", $in())
 %}
 printf("\n");
 row_counter++;
 %}
 printf("All done!\n");
 },
);

Notice what's missing? The semicolon at the end of the printf is missing.
 Unfortunately, the
error output of this example (contained in _Inline/build/bad_error_reporting_pl_8328/out.make)
borders on useless:

 bad_error_reporting_pl_4420.xs: In function
'pdl_my_print_rows_readdata':
 bad_error_reporting_pl_4420.xs:177: warning: format '%f' expects
type 'double', but argument 2 has type 'int'
 bad_error_reporting_pl_4420.xs:177: warning: format '%f' expects
type 'double', but argument 2 has type 'int'
 bad_error_reporting_pl_4420.xs:178: error: expected ';' before '}'
token
 bad_error_reporting_pl_4420.xs:222: warning: format '%f' expects
type 'double', but argument 2 has type 'int'
 bad_error_reporting_pl_4420.xs:222: warning: format '%f' expects
type 'double', but argument 2 has type 'int'
 bad_error_reporting_pl_4420.xs:223: error: expected ';' before '}'
token
 bad_error_reporting_pl_4420.xs:267: warning: format '%f' expects
type 'double', but argument 2 has type 'int'
 bad_error_reporting_pl_4420.xs:267: warning: format '%f' expects
type 'double', but argument 2 has type 'int'
 bad_error_reporting_pl_4420.xs:268: error: expected ';' before '}'
token
 bad_error_reporting_pl_4420.xs:312: warning: format '%f' expects
type 'double', but argument 2 has type 'PDL_Long'
 bad_error_reporting_pl_4420.xs:312: warning: format '%f' expects
type 'double', but argument 2 has type 'PDL_Long'
 bad_error_reporting_pl_4420.xs:313: error: expected ';' before '}'
token
 bad_error_reporting_pl_4420.xs:357: warning: format '%f' expects
type 'double', but argument 2 has type 'PDL_LongLong'
 bad_error_reporting_pl_4420.xs:357: warning: format '%f' expects
type 'double', but argument 2 has type 'PDL_LongLong'
 bad_error_reporting_pl_4420.xs:358: error: expected ';' before '}'
token
 bad_error_reporting_pl_4420.xs:403: error: expected ';' before '}'
token
 bad_error_reporting_pl_4420.xs:448: error: expected ';' before '}'
token

If you're a seasoned C programmer, you'll recognize the warning: it arises
 because PDL::PP
creates a branches of code for each data type that PDL
 supports, so using the %f type is not
correct. (The correct way to handle
 this is to use the $T macro.) That's not our problem,

The PDL Book

Page 178

though. The issue
 is the expected semicolon error. For a small function, you can probably just

scan through the code and look for a missing semicolon, but when you are
 working on a much
larger set of PP code, having the line number of the error
 would be much more useful. You
accomplish that by using the pp_line_numbers function, which adds #line directives into
your code
 so that errors get reported on the correct lines. Here is a slightly
 doctored version to
illustrate the issue. (Note that the text #line 1 ... must be flush against the left margin,
just like the __END__
 and __Pdlpp__ markers, or Perl won't realize that you are trying to tell

it about line numbers and things will be reported incorrectly.)

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 # Run the code on a 2x4 matrix:
 sequence(2,4)->my_print_rows;

 __END__

 __Pdlpp__
 #line 1 "my-inline-work"
 # This is reported as line 1
 pp_def('my_print_rows',
 Pars => 'in(n)',
 Code => pp_line_numbers(__LINE__, q{
 /* This line is reported as line 5
 * Thanks to pp_line_numbers */
 printf("About to start printing rows\n");
 int row_counter = 0;
 threadloop %{
 printf(" Row %3d: ", row_counter);
 loop(n) %{
 printf("%f, ", $in())
 %}
 printf("\n");
 row_counter++;
 %}
 printf("All done!\n");
 /* This is line 18 */
 }),
); # This is reported as line 20

Apart from a couple of comments to indicate the line counting, I introduced
 two modifications: I
added a #line directive at the top of
 the Pdlpp section and I wrapped the Code section in a
call to pp_line_numbers. (The #line directive is only necessary when using Inline::Pdlpp,
and is not necessary in a .pd file.) Now the error output
 gives the line of the closing bracket
that reports the missing semicolon:

 my-inline-work: In function 'pdl_my_print_rows_readdata':
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'int'
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'int'
 my-inline-work:13: error: expected ';' before '}' token
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'int'

The PDL Book

Page 179

 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'int'
 my-inline-work:13: error: expected ';' before '}' token
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'int'
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'int'
 my-inline-work:13: error: expected ';' before '}' token
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'PDL_Long'
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'PDL_Long'
 my-inline-work:13: error: expected ';' before '}' token
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'PDL_LongLong'
 my-inline-work:12: warning: format '%f' expects type 'double', but
argument 2 has type 'PDL_LongLong'
 my-inline-work:13: error: expected ';' before '}' token
 my-inline-work:13: error: expected ';' before '}' token
 my-inline-work:13: error: expected ';' before '}' token

All the errors are reported as occurring on line 13, immediately directing
 your eye to where the
problem lies. This lets you fix your problem and get
 on with your work.

Sometimes PDL::PP's parser croaks on invalid input. Sometimes it doesn't.
 For those times
when you when you feed PDL::PP bad code and the error
 reporting leaves you scratching
your head, consider wrapping your code in a pp_line_numbers call.

Wart: /* */ doesn't always work; use #if 0

Note: This issue has been addressed in the git copy of PDL as of April 23, 2012.
 It will make
its way onto CPAN with the release of PDL v2.4.11, slated for
 spring or summer of 2012.

Until the latest fixes, some of XS code that PDL::PP generates includes
 C-style comments
indicating what they do. This is useful when you find
 yourself digging into the generated XS
code as it helps you get your
 bearings. However, it can also break a relatively common use of
comments.
 (With the latest work, the commentary is still present, but they use a
 preprocessor
trick so that they don't break C-style comments anymore.)

When there is a logic bug in my code I find it helpful to reduce the
 complexity of the code and
comment-out sections at a time until I get an
 output that makes sense.

Here's an example. I am trying to print out the values in a piddle, but I
 have mistakenly used
\r instead of \n in my printf statement. On some systems, nothing will get sent to
STDOUT because IO operations
 are buffered, and I am left with a function that appears to
print nothing
 when it gets called. (The last value may get printed when the buffer fills,
 or when
the program terminates. Either way, it's very confusing.) So, I
 tried to comment out the
confusing print behavior and replace with something
 foolproof:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 # Run the code on a 2x4 matrix:
 sequence(2,4)->my_printout;

 __END__

The PDL Book

Page 180

 __Pdlpp__
 #line 1 "my-printout-pdlpp"
 pp_def('my_printout',
 Pars => 'in()',
 Code => pp_line_numbers(__LINE__, q{
 printf("This piddle contains:\n");
 threadloop %{
 /* grr, not working
 printf(" %f\r", $in());
 */
 printf(" Here\n");
 %}
 }),
);

This should work without a hitch. Unfortunately, this gives
 me these errors:

 my-printout-pdlpp: In function 'pdl_my_printout_readdata':
 my-printout-pdlpp:7: error: expected statement before ')' token
 my-printout-pdlpp:8: error: expected expression before '/' token
 my-printout-pdlpp:7: error: expected statement before ')' token
 my-printout-pdlpp:8: error: expected expression before '/' token
 my-printout-pdlpp:7: error: expected statement before ')' token
 my-printout-pdlpp:8: error: expected expression before '/' token
 my-printout-pdlpp:7: error: expected statement before ')' token
 my-printout-pdlpp:8: error: expected expression before '/' token
 my-printout-pdlpp:7: error: expected statement before ')' token
 my-printout-pdlpp:8: error: expected expression before '/' token
 my-printout-pdlpp:7: error: expected statement before ')' token
 my-printout-pdlpp:8: error: expected expression before '/' token
 my-printout-pdlpp:7: error: expected statement before ')' token
 my-printout-pdlpp:8: error: expected expression before '/' token

(Got different line numbers? Be sure to put remove all spaces before #line 1
"my-printout-pdlpp".) Lines seven and eight are these:

 printf(" %f\r", $in());
 */

Perplexed? You bet. I just commented out some code, how could I possibly
 have introduced a
compile error? Using pp_line_numbers, I know which
 lines in my code caused the C
compiler to choke, but I'm even more confused
 as to why it choked there.

The problem is that the memory access, $in(), gets replaced with a
 chunk of C code that
includes the comment /* ACCESS() */. As C comments
 do not nest, this leads to some
very wrong code. A different approach
 that achieves the same end is to use #if 0, a
common technique among C
 programmers for cutting out blocks of code:

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 # Run the code on a 2x4 matrix:
 sequence(2,4)->my_printout;

 __END__

The PDL Book

Page 181

 __Pdlpp__
 #line 1 "my-printout-pdlpp"
 pp_def('my_printout',
 Pars => 'in()',
 Code => pp_line_numbers(__LINE__, q{
 printf("This piddle contains:\n");
 threadloop %{
 #if 0
 printf(" %f\r", $in());
 #endif
 printf(" Here\n");
 %}
 }),
);

PDL::PP will still merrily fiddle with the stuff between the #if 0 and #endif, but the C
preprocessor will get rid of it before it actually
 tries to compile the code. Now the code at least
runs and printouts the
 expected dumb results:

 This piddle contains:
 Here
 Here
 Here
 Here
 Here
 Here
 Here
 Here

Hopefully this gives me enough to find that errant \r.

Recap
In this chapter, I've covered the very basics of using PDL::PP to write
 fast, versatile code. I have
covered much less material than I had hoped,
 and I hope to expand this chapter in the coming
months. Nonetheless, I hope
 and believe it will serve as a good starting point for learning PDL::PP,
and
 I expect it will give you enough to dig into the PDL::PP documentation.

Good luck, and happy piddling!

Appendix A: Installing Inline::Pdlpp
The PDL installation always installs Inline::Pdlpp, but that does not
 mean it works for you because
Inline is not actually a prerequisite for
 PDL. The good news is that once you have installed Inline,
Inline::Pdlpp
 will work automatically.

To begin, you will need to have access to the C compiler that compiled your
 copy of Perl. On Mac and
Linux, this amounts to ensuring that the developer
 tools that contain gcc are installed on your system.
On Windows, this will
 depend on your flavor of Perl. I personally have excellent experience working

with Strawberry Perl, which ships with a working C compiler, but you can also
 work with Visual C or
Cygwin. If you run into trouble, contact the PDL
 mailing list for help.

If you are on Linux, you can probably install Inline using your package
 manager. If you are not on
Linux or you do not have administrative privileges,
 you will have to install Inline using CPAN. To do
this, enter the following
 commands at your console:

 > cpan Inline

The PDL Book

Page 182

This will likely ask you a few questions during the installation, so do not
 walk away to get a cup of
coffee and expect it to be done.

Once that's installed, you should be ready to work with the examples.

Appendix B: Solutions to Exercises
Excercise Set 1

1. Slices

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';
 use PDL::NiceSlice;

 # Create $a
 my $a = sequence(5);
 print "a is $a\n";

 # Create $b as a five-element slice from a sequence:
 my $idx = pdl(1, 2, 7, 4, 8);
 my $b = sequence(20)->index($idx);
 print "b is $b\n";

 print "printout_sum(a, b) says:\n";
 $a->printout_sum($b);

 no PDL::NiceSlice;

 __END__

 __Pdlpp__
 pp_def('printout_sum',
 Pars => 'a(); b()',
 Code => q{
 printf("%f + %f = %f\n", $a(), $b(), $a() + $b());
 },
);

2. Threading

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 my $a = sequence(5);
 print "a is $a\n";
 my $b = sequence(5,3);
 print "b is $b\n";

 print "a + b = ", $a + $b, "\n";

 print "printout_sum(a, b) says:\n";
 $a->printout_sum($b);

The PDL Book

Page 183

 __END__

 __Pdlpp__
 pp_def('printout_sum',
 Pars => 'a(); b()',
 Code => q{
 printf("%f + %f = %f\n", $a(), $b(), $a() + $b());
 },
);

3. Orthogonal Piddles

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';

 my $a = sequence(5);
 print "a is $a\n";
 my $b = sequence(1,3);
 print "b is $b\n";

 print "a + b = ", $a + $b, "\n";

 print "printout_sum(a, b) says:\n";
 $a->printout_sum($b);

 __END__

 __Pdlpp__
 pp_def('printout_sum',
 Pars => 'a(); b()',
 Code => q{
 printf("%f + %f = %f\n", $a(), $b(), $a() + $b());
 },
);

4. Varying Input Order

Different input order would be like this:

 Pars => '[o] sum(); left(); [o] diff(); right()';
 Pars => '[o] sum(); [o] diff(); left(); right()';

The only consistency here is that sum always comes before diff, and left always comes
before right.

5. Supplying Outputs in the Function Call

For a Pars key like this:

 Pars => 'left(); right(); [o] sum(); [o] diff()';

You can call the function like this:

 my ($sum, $diff) = $left->my_sum_and_diff($right);

 my ($sum, $diff);

The PDL Book

Page 184

 $left->my_sum_and_diff($right
 , ($sum = PDL::null), ($diff = PDL::null));

 my $sum = $left->zeroes;
 my $diff = PDL::null;
 $left->my_sum_and_diff($right, $sum, $diff);

For the latter calling convention, the function returns nothing (rather than $sum and $diff).
When you supply a null piddle (as in the middle
 example) or you call the function with the input
piddles only (as in the
 first example), PDL will allocate memory for you. As demonstrated with
the
 last example, you can supply a pre-allocated piddle, in which case PDL will not allocate
memory for you. This can be a performance issue when you
 regularly call functions

Exercise Set 2

1. Matrix Multiplication, Fixed

The corrected Pars section should look like this:

 Pars => 'left(m,n); right(p,m); [o] output(n,p)',

2. Threading Engine Tricks

The key is to use clump(-1):

 my $matrix = sequence(2,4);
 my $result = $matrix->clump(-1)->my_sumover;

3. Cumulative Sum

 use strict;
 use warnings;
 use PDL;
 use Inline 'Pdlpp';
 my $a = sequence(10);
 print "Cumulative sum for a:\n";
 print $a->my_cumulative_sum;
 my $b = grandom(10,3);
 print "\nCumulative sum for b:\n";
 print $b->my_cumulative_sum;

 __END__

 __Pdlpp__

 pp_def('my_cumulative_sum',
 Pars => 'input(n); [o] output(n)',
 Code => q{
 double cumulative_sum;
 threadloop %{
 cumulative_sum = 0.0;
 loop (n) %{
 cumulative_sum += $input();
 $output() = cumulative_sum;
 %}
 %}
 }
);

The PDL Book

Page 185

4. Full Cumulative Sum

 pp_def('my_full_cumulative_sum',
 Pars => 'input(); [o] output()',
 Code => q{
 double cumulative_sum = 0.0;
 threadloop %{
 cumulative_sum += $input();
 $output() = cumulative_sum;
 %}
 }
);

The Beginnings of PDL
"Why is it that we entertain the belief that for every purpose odd
 numbers are the most effectual?" -
Pliny the Elder.

The PDL project began in February 1996, when I decided to experiment
 with writing my own 'Data
Language'. I am an astronomer. My day job
 involves a lot of analysis of digital data accumulated on
many nights
 observing on telescopes around the world. Such data might for example be
 images
containing millions of pixels and thousands of images of distant
 stars and galaxies. Or more
abstrusely, many hundreds of digital
 spectral revealing the secrets of the composition and properties
of
 these distant objects.

Obviously many astronomers before have dealt with these problems, and a
 large amount of software
has been constructed to facilitate their
 analysis. However, like many of my colleagues, I was
constantly
 frustrated by the lack of generality and flexibility of these programs
 and the difficulty of
doing anything out of the ordinary quickly and
 easily. What I wanted had a name: 'Data Language',
i.e. a language which
 allowed the manipulation of large amounts of data with simple arithmetic

expressions. In fact some commercial software worked like this, and I
 was impressed with the
capabilities but not with the price tag. And I
 thought I could do better.

As a fairly computer literate astronomer (read 'nerd' or 'geek'
 according to your local argot) I was very
familiar with 'Perl', a
 computer language which now seems to fill the shelves of many bookstores

around the world. I was impressed by it's power and flexibility, and
 especially it's ease of use. I had
even explored the depths of it's
 internals and written an interface to allow graphics - the PGPLOT
module
 (The PGPLOT module for perl is an interface to the pgplot graphics
 library (written in C and
FORTRAN) created by Tim Pearson of Caltech.
 More information about this library can be obtained
from: http://astro.caltech.edu/~tjp/pgplot/). The ease with which I could
 then create charts and graphs,
for my papers, was refreshing.

Version 5 of Perl had just been released, and I was fascinated by the
 new features available.
Especially the support of arbitrary data
 structures (or 'objects' in modern parlance) and the ability to

'overload' operators --- i.e. make mathematical symbols like +-*/ do
 whatever you felt like. It seemed
to me it ought to be possible to
 write an extension to Perl where I could play with my data in a general
way: for example using the maths operators manipulate whole images at
 once.

Well one slow night at an observatory I just thought I would try a
 little experiment. In a bored moment I
fired up a text editor and
 started to create a file called PDL.xs - a Perl extension module to

manipulate data vectors. A few hours later I actually had something half
 decent working, where I
could add two images in the Perl language, fast! This was something I could not let rest, and it
probably cost
 me one or two scientific papers worth of productivity. A few weeks later
 the Perl Data
Language version 1.0 was born. It was a pretty bare
 infant: very little was there apart from the basic
arithmetic operators.
 But encouraged I made it available on the Internet to see what people
 thought.

Well people were fairly critical - among the most vocal were Tuomas
 Lukka and Christian Soeller.
Unfortunately for them they were both Perl
 enthusiasts too and soon found themselves improving my

The PDL Book

Page 186

code to implement
 all the features they thought PDL ought to have and I had heinously
 neglected.
PDL is a prime example of that modern phenomenon of authoring
 large free software packages via
the Internet. Large numbers of people,
 most of whom have never met, have made contributions
ranging for core
 functionality to large modules to the smallest of bug patches. PDL
 version 2.0 is now
here (though it should perhaps have been called
 version 10 to reflect the amount of growth in size
and functionality)
 and the phenomenon continues.

I firmly believe that PDL is a great tool for tackling general problems
 of data analysis. It is powerful,
fast, easy to add too and freely
 available to anyone. I wish I had had it when I was a graduate student!
I hope you too will find it of immense value, I hope it will save you
 from heaps of time and frustration
in solving complex problems. Of
 course it can't do everything, but it provides the framework, the

hammers and the nails for building solutions without having to reinvent
 wheels or levers.

 - Karl Glazebrook, Sydney, Australia. 4/March/1999

The case for a high-level approach
We've all been there. You know how you want to analyze your data. You
 need to Fourier transform it,
take the square root, multiply by a
 high-pass filter and sum up all the high frequency modes. But it's
two
 in the morning and you are staring at the guts of your C or FORTRAN
 program trying to figure out
why your program keeps crashing with array
 overflow errors. You know these problems have been
solved individually
 innumerable times in the past, carefully written subroutines are
 available to do it.
Why should it be so difficult?

The reason is though subroutines are available low-level languages still
 force a lot of complexity on
you. You must manage memory yourself,
 declare variables however trivial, call subroutines with a
whole bunch
 of arguments in case just one of them is needed, etc. And you must be
 able to pull
together separate subroutine libraries to do file
 input/output, user interaction, data processing and
graphics.

Whereas all you really want to do is tell the computer things like 'read
 this', 'Fourier transform that',
and 'Plot this', and have it be smart
 enough to do the right thing. What you are wishing for is in effect
a
 high-level language, in this case it is called 'English'.

While natural language understanding is still quite a long way off,
 high-level computer languages are
currently proliferating. Examples
 include Perl, TCL, JAVAscriptm, Visual Basic, Python, and many
more.
 Such systems have also been developed for data processing. Worthy of
 note are commercial
software such as IDL ('Image Data Language' from
 Research Systems Inc.http://www.rsinc.com),
MATLAB (from The
 Mathworks, Inc. http://www.mathworks.com) and the public domain
 program
Octave http://www.octave.org. These implement
 special-purpose high-level languages where data is
handled in large
 chunks, via 'vector operations'.

What does this mean in practice? It means if you say:

 C=A+B

then the operation is performed even if A and B are large arrays
 containing many millions of numbers.
Further you can say something like:

 D=FFT(C)

(to apply a Fast Fourier Transform) and get what you want. No messing
 about. These data analysis
languages also implement nice graphics
 layers, as well as a large suite of mathematical algorithms.

Having used these systems ourselves the authors of PDL can attest to the
 superiority of that
approach in terms of plain getting things done. We
 of course believe that PDL is now better than all
those systems, for
 quite a few reasons, and that your life will be easier if you get it and
 use it.

The PDL Book

Page 187

The case for a free Data Language
The free software community has taken off to an extraordinary extent in
 the few years. This has been
most vivid in the success of the Linux, a
 free UNIX-like Operating System. Sometimes this movement
is also
 described as 'Open Source' rather than 'free,' and the term 'free' is
 often used to mean
freedom of use rather than freedom from price.
 Although much of the code is indeed free/public
domain money is made out
 of the sale of packaged distributions, support, books, etc.
 Nevertheless
the software is usually available at minimal cost.

One key point is that the source code is available, so that however the
 software is obtained one has
the ability to take it and in principle be
 able to change it to do whatever is required with it.

How is this relevant to data languages? The authors of PDL are all
 scientists. We write, obviously, as
scientists but believe our ideas are
 directly relevant to all users of PDL. The scientific community has
for
 hundreds of years believed in the free exchange of ideas. It has been
 traditional to publish full
details about how research is done openly
 in journals. This is very close in spirit to the ideas behind
the free
 software. These days much of what scientists do involves software, in
 fact large software
packages to facilitate certain kinds of analysis are
 often the subject of major papers themselves with
the software being
 freely available on the Internet. Such software is commonly written in C
 or
FORTRAN to allow general use.

Why aren't they working at a higher level? As we explained above this
 would allow faster creation and
make the software more portable and more
 easily customizable. Well in our view one of the reasons
this has not
 happened is because of the lack of a suitable free high-level
 data-centric language, with
powerful enough facilities.

This is not just a minor point, it is critical. Even if software is not
 published and is for internal use
among a team of researchers, in the
 modern world the team is often distributed among dozens of
individuals
 across many institutes and nations. The only way to ensure that all
 will be able to use
software is if it is freely available. All the PDL
 authors have had direct experience with this problem in
the past. We
 have often been hindered in sharing our code by collaborators having
 lack of access to
software.

Moreover scientific work often involves extensive innovations and
 modifications to old ways of doing
things. For software as well as being
 freely available it is critical to have access to the source code to

permit easy customization.

Finally there is also the issue of cost. Equivalent commercial
 packages cost several thousand dollars
per workstation. We are not
 anti-commercial, these packages are very powerful and useful. However

we certainly think there should be something like PDL that anybody
 can use and develop for free.
Science is a worldwide activity and we
 like to think that anybody with a PC could use PDL to do
research and
 analysis.

In our view PDL - a free, public domain, Open Source, data language -
 meets a great need. Today it
is openly developed by a group of several
 dozen people collaborating via the Internet. Anybody with
time,
 expertise or dedication can contribute to improving PDL.

So why Perl?
So we chose Perl as our implementation language. Our basic data language
 extensions could have
been built around quite a few high-level languages
 so why did we choose Perl? {Of course the real
reason we chose Perl was
 because we were using it already and liked it a lot. These 'reasons' are

really 'compelling rationalizations'!)

1. We need a high-level language which looks after messy details for the user.
 This of course is
why we don't want to use C or FORTRAN.

2. The language should be a commonly used and widely available on
 many platforms and with a
good chance that you already use it for something
 else. Like the reader, the authors get tired

The PDL Book

Page 188

of constantly have to learn
 new languages.

3. For the system to be fast and interactive the language should be able
 to run in an interpreted
mode, i.e. commands typed can be instantly executed
 without having to mess around with
compiling and linking. Most high-level
 languages offer this.

4. The language must be Open Source (i.e. free, in the public domain and
 with the source code
freely available and redistributable) as we wish
 our data language to be Open Source too.
Why? So people can use it
 without restrictions, share their code, make improvements to the
core
 language as well as extensions.

5. The language must offer a full suite of modern features. Users of PDL
 don't just need access
to numerical and graphics features. They also
 want quick and convenient access to
databases, network connectivity, the
 World Wide Web, Object-Oriented and modular
programming, graphical user
 interfaces, multi-process and multi-processor interactions, text

handling, the list could go on for several more sentences. In fact none
 of the data languages
mentioned above have all these features, in
 particular the commercial systems are hampered
in their access to these
 features by their proprietary nature and specialist syntax. We think it
 is
easier to add numerical features to a robust language which has all
 these other features than
to do it the other way around.

6. The language must have a clean and well-documented way of incorporating
 new subroutines,
in low-level languages such as C and FORTRAN, in to the
 core. First this lets us implement
PDL, secondly it allows diverse
 groups of people to create their own PDL modules and include
compiled
 code with their own specialist subroutines.

7. The language must be very easy to use, with a reasonably familiar syntax
 to new users. To
some extent this item and the previous one are
 contradictory. For example the Python
language, which is admirable
 for it's sophisticated and clean Object-Oriented model, meets all

the above requirements. Indeed their is already a numerical extension
 - NumPy (
http://numpy.scipy.org/). However in our view the syntax is a bit too strange for
 new users. We
prefer a language where simple code can still achieve useful
 results and which grows with the
user. We recognize of course that much
 of this is just a matter of preference. NumPy and
SciPy have grown into
 a well supported set of modules, so if you are into Python, go on and

use them!

Several separate sources of material have been used to make this 2012
 version of the PDL Book.
The biggest source of material has been "PDL -
 Scientific Programming in Perl", written in 2001 and
added to over the
 past decade by Karl Glazebrook, Christian Soeller, Tuomas J. Lukka, Marc

Lehmann, Jarle Brinchmann, Doug Hunt, John Cerney, Robin Williams and
 Tim Pickering, and
several chapters written by Craig DeForest from 2009.

The original source was written in LaTeX and LyX, which allowed
 embedding of figures in the
document. However, this has presented a
 small hurdle for other authours to add their own material.
With this in
 mind, Matthew Kenworthy set about converting one chapter of the PDL book
 into POD to
see what could be done, and the result didn't look too bad
 at all. Although this may seem to be a step
back from the finer
 formatting of LaTeX, tags can be included in POD so that the basic
 documentation
is readable at the command line, and there are enough
 filters to provide clean output in HTML and
PDF formats.

Several other people have carried out conversion of the original book
 and figures into POD, and
others have also contributed original new
 material for the PDL Book.

In alphabetical order, we have:

Joel Berger

Craig DeForest

The PDL Book

Page 189

Karl Glazebrook

Matthew Kenworthy

David Mertens

Chris Marshall

Joe Milosch

Creating.pod:

Section 2.4 from PDL LyX book by Craig DeForest
 POD-ed by M. Kenworthy

Functions:

Written by Matthew Kenworthy 2011

PGPLOT.pod:

Original text from "PDL - Scientific Programming in Perl" (2001) Chap. 4

Authors: Karl Glazebrook, Marc Lehmann, John Cerney, Christian Soeller,
 Jarle Brinchmann, Robin
Williams, Christopher Marshall, Tuomas J. Lukka,
 Doug Hunt, Tim Pickering.

Modified to LyX by Chris Marshall for PDL 2.4.3, December 2006.

Converted to POD format by Matthew Kenworthy, May 2010.

PLplot:

Joe Milosch, also known as zentara on perlmonks, assembled this document.
 David Merten, wrote
most of the section and examples on Object Oriented usage,
 which were taken from his slide show on
PLplot.

David Merten's slide show on PDL::Graphics-PLplot. His very
 informative slide show can be
downloaded or viewed at http://www.slideshare.net/dcmertens/p-lplot-talk

PP.pod:

David Mertens <dcmertens.perl@gmail.com>

Copyright (c) 2011 David Mertens. All rights reserved.

This is free documentation; you can redistribute it and/or
 modify it under the same terms as Perl itself.

Piddle.pod:

Original text from "PDL - Scientific Programming in Perl" (2001) Chap. 1

Authors: Karl Glazebrook, Marc Lehmann, John Cerney, Christian Soeller,
 Jarle Brinchmann, Robin
Williams, Christopher Marshall, Tuomas J. Lukka,
 Doug Hunt, Tim Pickering.

Modified to LyX by Chris Marshall for PDL 2.4.3, December 2006.

Converted to POD format by Mike Burns, May 2010.

