OpenTinker is an open-source Reinforcement Learning-as-a-Service (RLaaS) infrastructure intended to democratize reinforcement learning for large language model (LLM) agents. Traditional RL setups can be monolithic and difficult to configure, but OpenTinker separates concerns across agent definition, environment interaction, and execution, which lets developers focus on defining the logic of agents and environments separately from how training and inference are run. It introduces a centralized scheduler to manage distributed training jobs and shared compute resources, enabling workloads like reinforcement learning, supervised fine-tuning, and inference to run across multiple settings. The architecture supports a range of single-turn and multi-turn agentic tasks with a design that abstracts away infrastructure complexity while offering flexible Python APIs to define environments and workflows.
Features
- Reinforcement learning infrastructure for LLM agents
- Client-scheduler-server architecture
- Built-in job scheduling and GPU resource management
- Support for single-turn and multi-turn agent environments
- High-level Python APIs for defining agents and workflows
- Isolating agent logic from execution details