This is an easy-to-understand algorithm of integer factorization with heuristically evaluated complexity L(4/15, 2), which is better than the general number field sieve algorithm with L(1/3, 1.923).
NFB searches common factors of the quadratic residues modulo n using GCD. All relations are processed by the Gaussian elimination procedure. Different strategies of searching the relations can be applied, many giving complexity better than L(1/3, 1.923).

Features

  • no-factor-base
  • gcd
  • factorization
  • integer
  • congruence-of-squares

Project Samples

Project Activity

See All Activity >

Follow NFB integer factorization

NFB integer factorization Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 by Okta Icon
Our Free Plans just got better! | Auth0 by Okta

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Ratings

★★★★★
★★★★
★★★
★★
1
0
0
0
0
ease 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
features 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 3 / 5
design 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 3 / 5
support 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5

User Reviews

  • You do not need to be a specialist in number theory to comprehend this algorithm and try different strategies of searching quadratic residues mod N . Good for home research in number theory :) or as a material for a diploma thesis. Significant work is needed to parallelize this on GPU or CPU for factorization of really large numbers.
Read more reviews >

Additional Project Details

Registered

2021-08-11