Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
CNN.tar.gz | 2017-03-24 | 960.3 kB | |
readme.txt | 2017-03-24 | 2.9 kB | |
CNN_Layers.txt | 2017-03-24 | 2.9 kB | |
001_CNN-LSTM.jpg | 2017-03-24 | 212.6 kB | |
002_VGG-16.jpg | 2017-03-24 | 251.1 kB | |
003_RNN.jpg | 2017-03-24 | 24.3 kB | |
004_CNN_Layers.jpg | 2017-03-24 | 476.7 kB | |
005_CNN_Layers_01.jpg | 2017-03-24 | 333.3 kB | |
006_CNN_Layers_02.jpg | 2017-03-24 | 396.7 kB | |
007_One_ConvolutionalLayer.jpg | 2017-03-24 | 576.3 kB | |
008_Adam_CrossEntropy.jpg | 2017-03-24 | 612.8 kB | |
009_Adam_CrossEntropy_mean.jpg | 2017-03-24 | 570.8 kB | |
010_GradientDescent_CrossEntropy.jpg | 2017-03-24 | 575.4 kB | |
011_GradientDescent_CrossEntropy_mean.jpg | 2017-03-24 | 507.6 kB | |
012_LearningRate_0.0001.jpg | 2017-03-24 | 566.7 kB | |
013_LearningRate_0.001.jpg | 2017-03-24 | 635.8 kB | |
014_LearningRate_0.01.jpg | 2017-03-24 | 592.8 kB | |
Totals: 17 Items | 7.3 MB | 0 |
@ [CNN] => 3 layers (1 "Hidden" layers + 2 "Fully_Connected" layers) # ====================================== # [ Input_Data:{MNIST_Image} ] # L1 => [ Convolutional_Layer_1:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L2 => [ Fully_Connected_Layer_1:{xW+b} ] -> [ Activation:{relu} ] # L3 => [ Fully_Connected_Layer_2:{xW+b} ] -> [ Classifier:{softmax} ] # => [ Optimizer:{Adam} ] # => [ Output_Data:{Image_Label} ] # ====================================== @ [CNN_0] => 3 layers (1 "Hidden" layers + 2 "Fully_Connected" layers) # ====================================== # [ Input_Data:{MNIST_Image} ] # L1 => [ Convolutional_Layer_1:{conv2d} ] -> [ Activation:{relu} ] # L2 => [ Fully_Connected_Layer_1:{xW+b} ] -> [ Activation:{relu} ] # L3 => [ Fully_Connected_Layer_2:{xW+b} ] -> [ Classifier:{softmax} ] # => [ Optimizer:{Adam} ] # => [ Output_Data:{Image_Label} ] # ====================================== @ [CNN_1] => 4 layers (2 "Hidden" layers + 2 "Fully_Connected" layers) # ====================================== # [ Input_Data:{MNIST_Image} ] # L1 => [ Convolutional_Layer_1:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L2 => [ Convolutional_Layer_2:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L3 => [ Fully_Connected_Layer_1:{xW+b} ] -> [ Activation:{relu} ] # L4 => [ Fully_Connected_Layer_2:{xW+b} ] -> [ Classifier:{softmax} ] # => [ Optimizer:{Adam} ] # => [ Output_Data:{Image_Label} ] # ====================================== @ [CNN_2] => 5 layers (3 "Hidden" layers + 2 "Fully_Connected" layers) # ====================================== # [ Input_Data:{MNIST_Image} ] # L1 => [ Convolutional_Layer_1:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L2 => [ Convolutional_Layer_2:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L3 => [ Convolutional_Layer_3:{conv2d} ] -> [ Activation:{relu} ] # L4 => [ Fully_Connected_Layer_1:{xW+b} ] -> [ Activation:{relu} ] # L5 => [ Fully_Connected_Layer_2:{xW+b} ] -> [ Classifier:{softmax} ] # => [ Optimizer:{Adam} ] # => [ Output_Data:{Image_Label} ] # ====================================== @ [CNN_3] => 5 layers (3 "Hidden" layers + 2 "Fully_Connected" layers) # ====================================== # [ Input_Data:{MNIST_Image} ] # L1 => [ Convolutional_Layer_1:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L2 => [ Convolutional_Layer_2:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L3 => [ Convolutional_Layer_3:{conv2d} ] -> [ Max_Pooling:{max_pool} ] -> [ Activation:{relu} ] # L4 => [ Fully_Connected_Layer_1:{xW+b} ] -> [ Activation:{relu} ] # L5 => [ Fully_Connected_Layer_2:{xW+b} ] -> [ Classifier:{softmax} ] # => [ Optimizer:{Adam} ] # => [ Output_Data:{Image_Label} ] # ======================================