Download Latest Version v1.15.2 source code.tar.gz (19.7 MB)
Email in envelope

Get an email when there's a new version of Meilisearch

Home / v1.15.1
Name Modified Size InfoDownloads / Week
Parent folder
meilisearch-macos-apple-silicon 2025-06-11 115.4 MB
meilisearch-windows-amd64.exe 2025-06-11 119.1 MB
meilisearch-macos-amd64 2025-06-11 118.1 MB
meilisearch-linux-aarch64 2025-06-11 120.1 MB
meilisearch.deb 2025-06-11 80.4 MB
meilisearch-linux-amd64 2025-06-11 122.8 MB
README.md 2025-06-11 1.8 kB
v1.15.1 source code.tar.gz 2025-06-11 19.7 MB
v1.15.1 source code.zip 2025-06-11 20.6 MB
Totals: 9 Items   716.1 MB 1

Meilisearch v1.15.1 adds new experimental conversational features and enables LLM-driven chat features.

🧰 All official Meilisearch integrations (including SDKs, clients, and other tools) are compatible with this Meilisearch release. Integration deployment takes 4 to 48 hours after a new version becomes available.

Some SDKs might not include all new features. Please look over the project repository for detailed information. Is a feature you need missing from your chosen SDK? Create an issue letting us know you need it, or, for open-source karma points, open a PR implementing it (we'll love you for that ā¤ļø).

Chat with your indexes

After enabling the experimental chat feature, you can create a chat workspace with the appropriate settings. We have a guide on how to set up a good chat interface for your indexes.

:::bash
curl -X POST 'http://localhost:7700/chats/my-assistant/settings' \
  -H 'Content-Type: application/json' \
  -d '{
    "source": "OpenAi",
    "apiKey": "sk-abc..."
  }'

Then by using the official OpenAI SDK you'll be able to chat with your indexes.

:::javascript
import OpenAI from 'openai';

const client = new OpenAI({
  baseURL: 'http://localhost:7700/chats/my-assistant',
  apiKey: 'YOUR_MEILISEARCH_CHAT_API_KEY',
});

const completion = await client.chat.completions.create({
  model: 'gpt-3.5-turbo',
  messages: [{ role: 'user', content: 'What is Meilisearch?' }],
  stream: true,
});

for await (const chunk of completion) {
  console.log(chunk.choices[0]?.delta?.content || '');
}

Done by @Kerollmops in #5556.

Source: README.md, updated 2025-06-11