Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
readme.txt | 2018-09-24 | 2.1 kB | |
ellipse_kepler_angles.m | 2018-09-05 | 11.7 kB | |
examples_ellipse_kepler_angles.m | 2018-09-05 | 2.1 kB | |
Totals: 3 Items | 15.9 kB | 0 |
ANGLES (OF ECCENTRIC ANOMALY) IN AN ELLIPSE OR SECTOR WHICH SWEEP SAME AREA (LIKE KEPLER'S LAW) ================================================================================================= ## ellipse_kepler_angles * ellipse_kepler_angles( a, b ). n=1, tilt=0 and theta=2*pi are assumed * ellipse_kepler_angles( a, b, n ). tilt=0 and theta=2*pi are assumed * ellipse_kepler_angles( a, b, n, tilt, theta ). centre = 'f' is assumed. * ellipse_kepler_angles( a, b, n, tilt, theta, centre ) Second law of Kepler: A line joining a planet and the Sun sweeps out equal areas during equal intervals of time This function takes parameters of an ellipse: a - semi-major axis. a > b b - semi-minor axis. b < a The number of equal area sections to split the ellipse: n - number (integer) of sections. . By default: 1. And, optionally, angles of a sector (from semi-major axis centred in focus or centre in that axis): tilt - start angle. By default: 0 theta - finish angle. By default: 2*pi centre - centre or angle: 'c' = centre of ellipse, 'f' = focus (+c,0). By default: focus. And returs an array of angular coordinates (E) measured counterclockwise from the semi-major axis (with reference focus), fron 0 to 2*pi, of equal areas like second law of Kepler. Inputs: a - semi-major axis. a > b b - semi-minor axis. b < a n - number (integer) of sections. n > 0 tilt - start angle. pi < tilt < pi theta - end angle from title (counterclockwise). 0 < theta < 2*pi Output: angles - array of angles from 0 to 2*pi of eccentric anomaly with equal area sweeped ## examples_ellipse_kepler_angles A script with two examples of use of the function ellipse_kepler_angles ##################################################################################### Rebeca González Barrio 2018 #####################################################################################