LLM Council is a creative open-source web application by Andrej Karpathy that lets you consult multiple large language models together to answer questions more reliably than querying a single model. Instead of relying on one provider, this application sends your query simultaneously to several LLMs supported via OpenRouter, collects each model’s independent response, and then orchestrates a multi-stage evaluation where the models critique and rank each other’s outputs anonymously. After this peer-review process, a designated “Chairman” model synthesizes a final consolidated answer drawing on the strengths and insights of all participants. The interface looks like a familiar chat app but under the hood it implements this ensemble and consensus workflow to reduce bias and leverage diverse reasoning styles.
Features
- Ensemble querying of multiple LLMs through OpenRouter
- Multi-stage responses with peer review and ranking
- "Chairman” synthesis for final answer output
- Local storage of conversation history
- React frontend with familiar chat UI
- Configurable panel of models and workflows