LTS (Learning to Search) is an implementation of an algorithm described in "LTS: Discriminative Subgraph Mining by Learning from Search History" in Data Engineering (ICDE), IEEE 27th International Conference, pages 207-218, 2011. The purpose of LTS is to find discriminative subgraphs, which are smaller graphs that are embedded in larger graphs that all share a certain trait. A discriminative subgraph can help to characterize a complex graph and can be used to classify new graphs with unknown traits. LTS is an improvement on other subgraph mining algorithms because it uses empirical data from the search history of a first pass to help weed out unpromising search directions. This allows a second pass to spend more time investigating promising areas of search to generate the most discriminative subgraphs more quickly than before.

Project Activity

See All Activity >

Follow LTS: Learning to Search

LTS: Learning to Search Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of LTS: Learning to Search!

Additional Project Details

Registered

2013-05-24