ImageBind is a multimodal embedding framework that learns a shared representation space across six modalities—images, text, audio, depth, thermal, and IMU (inertial motion) data—without requiring explicit pairwise training for every modality combination. Instead of aligning each pair independently, ImageBind uses image data as the central binding modality, aligning all other modalities to it so they can interoperate zero-shot. This creates a unified embedding space where representations from any modality can be compared or retrieved against any other (e.g., matching sound to text or depth to image). The model is trained using large-scale contrastive learning, leveraging diverse datasets from natural images, videos, audio clips, and sensor data. Once trained, it can perform cross-modal retrieval, zero-shot classification, and multimodal composition without additional fine-tuning.
Features
- Unified embedding space aligning six modalities (image, text, audio, depth, thermal, IMU)
- Image-centered alignment enabling cross-modal zero-shot reasoning
- Contrastive multimodal training on large-scale diverse datasets
- Zero-shot retrieval, classification, and composition across modalities
- Pretrained checkpoints and inference utilities for rapid experimentation
- Extensible framework for adding new modalities or adapting to custom data