A GPU-based efficient data parallel formulation of the k-Nearest Neighbor (kNN) search problem which is a popular method for classifying objects in several fields of research, such as- pattern recognition, machine learning, bioinformatics etc.

Project Samples

Project Activity

See All Activity >

License

Academic Free License (AFL)

Follow gpufsknn

gpufsknn Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

Build gen AI apps with an all-in-one modern database: MongoDB Atlas

MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
Start Free
Rate This Project
Login To Rate This Project

User Ratings

★★★★★
★★★★
★★★
★★
0
1
0
0
0
ease 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 4 / 5
features 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 4 / 5
design 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 4 / 5
support 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 3 / 5

User Reviews

  • Is it possible to run A GPU-based efficient data parallel formulation of the k-Nearest Neighbor (kNN) search problem, compiled and run able on windows platform ?? i really need your help kindly help me. if possible then describe me procedure
Read more reviews >

Additional Project Details

Operating Systems

Game Consoles, Linux

User Interface

Command-line

Programming Language

C++

Related Categories

C++ Genetic Algorithms

Registered

2011-11-10