gemini-fullstack-langgraph-quickstart is a fullstack reference application from Google DeepMind’s Gemini team that demonstrates how to build a research-augmented conversational AI system using LangGraph and Google Gemini models. The project features a React (Vite) frontend and a LangGraph/FastAPI backend designed to work together seamlessly for real-time research and reasoning tasks. The backend agent dynamically generates search queries based on user input, retrieves information via the Google Search API, and performs reflective reasoning to identify knowledge gaps. It then iteratively refines its search until it produces a comprehensive, well-cited answer synthesized by the Gemini model. The repository provides both a browser-based chat interface and a command-line script (cli_research.py) for executing research queries directly. For production deployment, the backend integrates with Redis and PostgreSQL to manage persistent memory, streaming outputs, & background task coordination.
Features
- Fullstack AI app with React frontend and LangGraph backend
- Gemini-powered research agent with dynamic query generation
- Integrated Google Search API for real-time web research
- Reflective reasoning loop for identifying and filling knowledge gaps
- Generates final answers with citations from gathered sources
- Ready for Docker-based production deployment with Redis and PostgreSQL support