Fuzzy Ecospace Modelling (FEM) is an R-based program for quantifying and comparing functional disparity, using a fuzzy set theory-based machine learning approach. FEM clusters n-dimensional matrices of functional traits (ecospace matrices – here called the Training Matrix) into functional groups and converts them into fuzzy functional groups using fuzzy discriminant analysis (Lin and Chen 2004 – see main text for more information). Following this, FEM classifies the functional entities from a second matrix (the Test Matrix) into the groups made using the Training Matrix, generating fuzzy membership values for each unit in the Test Matrix. These values are real numbers from 0 to 1, representing increasing degrees of “truth” regarding an organism’s membership in the fuzzy set (see main text). A value of 0 represents non-membership in the fuzzy set, and a value of 1 represents total membership in the fuzzy set. Values in between represent degrees of niche overlap.

Project Activity

See All Activity >

License

GNU General Public License version 3.0 (GPLv3)

Follow Fuzzy Ecospace Modelling

Fuzzy Ecospace Modelling Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Fuzzy Ecospace Modelling!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Intended Audience

Science/Research

Registered

2018-03-25