Fuzzy Ecospace Modelling (FEM) is an R-based program for quantifying and comparing functional disparity, using a fuzzy set theory-based machine learning approach. FEM clusters n-dimensional matrices of functional traits (ecospace matrices – here called the Training Matrix) into functional groups and converts them into fuzzy functional groups using fuzzy discriminant analysis (Lin and Chen 2004 – see main text for more information). Following this, FEM classifies the functional entities from a second matrix (the Test Matrix) into the groups made using the Training Matrix, generating fuzzy membership values for each unit in the Test Matrix. These values are real numbers from 0 to 1, representing increasing degrees of “truth” regarding an organism’s membership in the fuzzy set (see main text). A value of 0 represents non-membership in the fuzzy set, and a value of 1 represents total membership in the fuzzy set. Values in between represent degrees of niche overlap.
Fuzzy Ecospace Modelling
FEM allows users to create fuzzy functional groups for use in ecology.
Brought to you by:
danieldick
Downloads:
0 This Week
Linux
Mac
Windows