FinRobot is an open-source AI framework focused on automating financial data workflows by combining data ingestion, feature engineering, model training, and automated decision-making pipelines tailored for quantitative finance applications. It provides developers and quants with structured modules to fetch market data, process time series, generate technical indicators, and construct features appropriate for machine learning models, while also supporting backtesting and evaluation metrics to measure strategy performance. Built with modularity in mind, FinRobot allows users to plug in custom models — from classical algorithms to deep learning architectures — and orchestrate components in pipelines that can run reproducibly across experiments. The framework also tends to include automation layers for deployment, enabling trained models to operate in live or simulated environments with scheduled re-training and risk controls in place.
Features
- Market data ingestion and preprocessing
- Feature engineering for financial time series
- Plug-and-play model training and evaluation
- Backtesting and performance metrics
- Pipeline orchestration for reproducibility
- Logging and experiment versioning