Fuzzy clustering variation looks for a good subset of attributes in order to improve the classification accuracy of supervised learning techniques in classification problems with a huge number of attributes involved. It first creates a ranking of attributes based on the Variation value, then divide into two groups, last using Verification method to select the best group.Simon Fong, Justin Liang, YanZhuang, "Improving Classification Accuracy Using Fuzzy Clustering Coefficients of Variations (FCCV) Feature Selection Algorithm", 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), pp.147-151

Features

  • fast
  • multiable class
  • All kinds of attribute

Project Samples

Project Activity

See All Activity >

Follow Fuzzy Clustering Coefficient Variation

Fuzzy Clustering Coefficient Variation Web Site

Other Useful Business Software
Cloud-based help desk software with ServoDesk Icon
Cloud-based help desk software with ServoDesk

Full access to Enterprise features. No credit card required.

What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
Try ServoDesk for free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Fuzzy Clustering Coefficient Variation !

Additional Project Details

Registered

2014-12-20