Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
readme.txt | 2019-04-24 | 1.5 kB | |
selectfeatureexe.php | 2019-04-13 | 1.2 kB | |
split.php | 2019-04-13 | 1.9 kB | |
rst0.php | 2019-04-13 | 2.2 kB | |
rst.php | 2019-04-13 | 2.2 kB | |
selectfeature.php | 2019-04-13 | 738 Bytes | |
readcsvbcs.php | 2019-04-13 | 497 Bytes | |
readcsvbcsfilter.php | 2019-04-13 | 1.1 kB | |
MBCSFStraditional.php | 2019-04-13 | 751 Bytes | |
mbcsfstraditionalexe.php | 2019-04-13 | 5.3 kB | |
measureclassifier.php | 2019-04-13 | 897 Bytes | |
readcsv.php | 2019-04-13 | 495 Bytes | |
MBCSFS.php | 2019-04-13 | 777 Bytes | |
MBCSFSexe.php | 2019-04-13 | 5.3 kB | |
mainBcsNewTerm.php | 2019-04-13 | 960 Bytes | |
mainfilter.php | 2019-04-13 | 1.0 kB | |
maininitial.php | 2019-04-13 | 1.0 kB | |
mainsplit.php | 2019-04-13 | 1.0 kB | |
main.php | 2019-04-13 | 297 Bytes | |
mainbcs.php | 2019-04-13 | 779 Bytes | |
Home page image.png | 2019-04-13 | 99.5 kB | |
index.php | 2019-04-13 | 2.6 kB | |
bcs.php | 2019-04-13 | 3.9 kB | |
bcsfilter.php | 2019-04-13 | 4.2 kB | |
bcsmewter.php | 2019-04-13 | 3.9 kB | |
Totals: 25 Items | 143.9 kB | 0 |
Enhanced Binary Cuckoo Search with Frequent Values and Rough Set Theory for Feature Selection (EBCS) ---------------------------------------------------------------------- EBCS Implementation ====================================================================== This Filter Feature Selection approach (EBCS), baseline approach (FS-BCS) with other tasks developed by PHP Programing language. Initial parameters for EBCS and FS-BCS as follows: Maximum number of iteration is 20. Population size is 20. Probability (P) is 0.25. Alpha is 0.1. After Downloading and copying the EBCS directory to directory root, and request the EBCS/index.php page to show home page which contains the following tasks: 1. The new Approach: EBCS. 2. The baseline approach: FS-BCS. 3. Enhanced Binary Cuckoo Search with traditional Objective function (Rough set theory dependency degree), This aims to evaluate the new objective function compared to traditional objective function: EBCS-Eq.(2). 4. Reducing the dataset based on the specific features which entered by user. (notice the first index is 0): Reduction. 5. Splitting dataset into training and test datasets randomly with different percentages determined by user. Note: Please put any dataset (CSV format) in the datasets directory. For any help, please contact me by abualia4@yahoo.com ===================================================================== Good luck Developed by Ahmed Alia and Adel Taweel.