Home / EBCS
Name Modified Size InfoDownloads / Week
Parent folder
readme.txt 2019-04-24 1.5 kB
selectfeatureexe.php 2019-04-13 1.2 kB
split.php 2019-04-13 1.9 kB
rst0.php 2019-04-13 2.2 kB
rst.php 2019-04-13 2.2 kB
selectfeature.php 2019-04-13 738 Bytes
readcsvbcs.php 2019-04-13 497 Bytes
readcsvbcsfilter.php 2019-04-13 1.1 kB
MBCSFStraditional.php 2019-04-13 751 Bytes
mbcsfstraditionalexe.php 2019-04-13 5.3 kB
measureclassifier.php 2019-04-13 897 Bytes
readcsv.php 2019-04-13 495 Bytes
MBCSFS.php 2019-04-13 777 Bytes
MBCSFSexe.php 2019-04-13 5.3 kB
mainBcsNewTerm.php 2019-04-13 960 Bytes
mainfilter.php 2019-04-13 1.0 kB
maininitial.php 2019-04-13 1.0 kB
mainsplit.php 2019-04-13 1.0 kB
main.php 2019-04-13 297 Bytes
mainbcs.php 2019-04-13 779 Bytes
Home page image.png 2019-04-13 99.5 kB
index.php 2019-04-13 2.6 kB
bcs.php 2019-04-13 3.9 kB
bcsfilter.php 2019-04-13 4.2 kB
bcsmewter.php 2019-04-13 3.9 kB
Totals: 25 Items   143.9 kB 0
Enhanced Binary Cuckoo Search with Frequent Values and Rough Set Theory for Feature Selection (EBCS)
----------------------------------------------------------------------
EBCS Implementation
======================================================================

This Filter Feature Selection approach (EBCS), baseline approach (FS-BCS) with other tasks developed by PHP Programing language.

Initial parameters for EBCS and FS-BCS as follows:
  Maximum number of iteration is 20.
  Population size is 20.
  Probability (P) is 0.25.
  Alpha is 0.1.

After Downloading and copying the EBCS directory to directory root, and  request the EBCS/index.php page to show home page which contains the following tasks:
 
1. The new Approach: EBCS.
2. The baseline approach: FS-BCS.
3. Enhanced Binary Cuckoo Search with traditional Objective function (Rough set theory dependency degree), This aims to evaluate the new objective function compared to traditional objective function: EBCS-Eq.(2). 
4. Reducing the dataset based on the specific features which entered by user. (notice the first index is 0): Reduction.
5. Splitting dataset into training and test datasets randomly with different percentages determined by user.

Note: Please put any dataset (CSV format) in the datasets directory.
For any help, please contact me by
abualia4@yahoo.com
=====================================================================
Good luck
Developed by Ahmed Alia and Adel Taweel. 
Source: readme.txt, updated 2019-04-24