DeepSeek-V2 is the second major iteration of DeepSeek’s foundation language model (LLM) series. This version likely includes architectural improvements, training enhancements, and expanded dataset coverage compared to V1. The repository includes model weight artifacts, evaluation benchmarks across a broad suite (e.g. reasoning, math, multilingual), configuration files, and possibly tokenization / inference scripts. The V2 model is expected to support more advanced features like better context window handling, more efficient inference, better performance on challenging tasks, and stronger alignment with human feedback. Because DeepSeek is pushing open-weight competition, this V2 iteration is meant to solidify its position in benchmark rankings and in developer adoption. The code in the repository may include description files, support for tool use or plug-in architectures, and artifacts showing fine-tuning or prompt templates.
Features
- Upgraded foundation LLM model architecture over V1
- New or improved benchmark results on reasoning, math, language tasks
- Configuration and inference scripts for deployment
- Support for enhanced context and inference optimizations
- Tool or plugin compatibility (if present in code)
- Public model weights (where allowed) and evaluation reporting