Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
Deepo v2.0.0.tar.gz | 2017-11-27 | 15.5 kB | |
Deepo v2.0.0.zip | 2017-11-27 | 44.2 kB | |
README.md | 2017-11-27 | 8.4 kB | |
Totals: 3 Items | 68.0 kB | 0 |
Deepo2 is now a series of Docker images that - allows you to quickly set up your deep learning research environment - supports almost all commonly used deep learning frameworks: theano, tensorflow, sonnet, pytorch, keras, lasagne, mxnet, cntk, chainer, caffe, torch
and their Dockerfile generator that - allows you to customize your own environment with Lego-like modules - automatically resolves the dependencies for you
Table of contents
- Quick Start
- Installation
- Usage
- Customization
- I hate all-in-one solution
- Other python versions
- Build your own customized image
- Comparison to Alternatives
- Contributing
- Licensing
Quick Start
Installation
Step 1. Install Docker and nvidia-docker.
Step 2. Obtain the all-in-one image from Docker Hub
:::bash
docker pull ufoym/deepo
Usage
Now you can try this command:
:::bash
nvidia-docker run --rm ufoym/deepo nvidia-smi
This should work and enables Deepo to use the GPU from inside a docker container. If this does not work, search the issues section on the nvidia-docker GitHub -- many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do
:::bash
nvidia-docker run -it ufoym/deepo bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
:::bash
nvidia-docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash
This will make /host/data
from the host visible as /data
in the container, and /host/config
as /config
. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host
or --shm-size
command line options to nvidia-docker run
.
:::bash
nvidia-docker run -it --ipc=host ufoym/deepo bash
You are now ready to begin your journey.
:::$ python```
:::python
import tensorflow import sonnet import torch import keras import mxnet import cntk import chainer import theano import lasagne import caffe
:::$ caffe --version```
caffe version 1.0.0
:::$ th```
│ _ __ | Torch7 │ / / ________/ / | Scientific computing for Lua. │ / / / _ \/ / / _ \ | Type ? for help │ /_/ _// _//// | https://github.com/torch │ | http://torch.ch │ │th>
<a name="Customization"/>
# Customization
Note that `docker pull ufoym/deepo` mentioned in [Quick Start](#Quick-Start) will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.
<a name="One"/>
## I hate all-in-one solution
If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework.
Take tensorflow for example:
:::bash
docker pull ufoym/deepo:tensorflow
<a name="Python"/>
## Other python versions
Note that all python-related images use `Python 3.6` by default. If you are unhappy with `Python 3.6`, you can also specify other python versions:
:::bash
docker pull ufoym/deepo:py27
:::bash
docker pull ufoym/deepo:tensorflow-py27
Currently, we support `Python 2.7` and `Python 3.6`.
See [https://hub.docker.com/r/ufoym/deepo/tags/](https://hub.docker.com/r/ufoym/deepo/tags/) for a complete list of all available tags. These pre-built images are all built from `docker/Dockerfile.*` and `circle.yml`. See [How to generate `docker/Dockerfile.*` and `circle.yml`](https://github.com/ufoym/deepo/tree/master/scripts) if you are interested in how these files are generated.
<a name="Build"/>
## Build your own customized image with Lego-like modules
#### Step 1. prepare generator
:::bash
git clone https://github.com/ufoym/deepo.git cd deepo/generator pip install -r requirements.txt
#### Step 2. generate your customized Dockerfile
For example, if you like `pytorch` and `lasagne`, then
:::bash
python generate.py Dockerfile pytorch lasagne
This should generate a Dockerfile that contains everything for building `pytorch` and `lasagne`. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don't need to worry about missing dependencies and the list order.
You can also specify the version of Python:
:::bash
python generate.py Dockerfile pytorch lasagne python==3.6
#### Step 3. build your Dockerfile
:::bash
docker build -t my/deepo .
This may take several minutes as it compiles a few libraries from scratch.
<a name="Comparison"/>
# Comparison to alternatives
. | modern-deep-learning | dl-docker | jupyter-deeplearning | Deepo
:------------------------------------------------: | :------------------: | :----------------: | :------------------: | :----------------:
[ubuntu](https://www.ubuntu.com) | 16.04 | 14.04 | 14.04 | 16.04
[cuda](https://developer.nvidia.com/cuda-zone) | :x: | 8.0 | 6.5-8.0 | 8.0
[cudnn](https://developer.nvidia.com/cudnn) | :x: | v5 | v2-5 | v6
[theano](http://deeplearning.net/software/theano) | :x: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:
[tensorflow](http://www.tensorflow.org) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:
[sonnet](https://github.com/deepmind/sonnet) | :x: | :x: | :x: | :heavy_check_mark:
[pytorch](http://pytorch.org) | :x: | :x: | :x: | :heavy_check_mark:
[keras](https://keras.io) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:
[lasagne](http://lasagne.readthedocs.io) | :x: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:
[mxnet](http://mxnet.incubator.apache.org) | :x: | :x: | :x: | :heavy_check_mark:
[cntk](http://cntk.ai) | :x: | :x: | :x: | :heavy_check_mark:
[chainer](https://chainer.org) | :x: | :x: | :x: | :heavy_check_mark:
[caffe](http://caffe.berkeleyvision.org) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:
[torch](http://torch.ch/) | :x: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: