Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
README.md | 2020-04-21 | 1.7 kB | |
v0.4.0 source code.tar.gz | 2020-04-21 | 1.3 MB | |
v0.4.0 source code.zip | 2020-04-21 | 1.4 MB | |
Totals: 3 Items | 2.7 MB | 0 |
New Features
- Release EfficientNet model implementation (#475)
- Add support to convert any
PyTorch
model to aClassyModel
with the ability to attach heads to it (#461) - Added a corresponding tutorial on
ClassyModel
andClassyHeads
(#485) - Squeeze and Excitation support for
ResNe(X)t
andDenseNet
models (#426, [#427]) - Made
ClassyHook
s registrable (#401) and configurable (#402) - Migrated to
TorchElastic v0.2.0
(#464) - Add
SyncBatchNorm
support (#423) - Implement
mixup
train augmentation (#469) - Support
LARC
for SGD optimizer (#408) - Added convenience wrappers for
Iterable
datasets (#455) Tensorboard
improvements- Plot histograms of model weights to Tensorboard (#432)
- Reduce data logged to tensorboard (#436)
- Invalid (
NaN
/Inf
) loss detection - Revamped logging (#478)
- Add
bn_weight_decay
configuration option forResNe(X)t
models - Support specifying
update_interval
to Parameter Schedulers (#418)
Breaking changes
ClassificationTask
API improvement andtrain_step
,eval_step
simplification- Removed
local_variables
fromClassificationTask
(#411, [#412], [#413], [#414], [#416], [#421]) - Move
use_gpu
fromClassyTrainer
toClassificationTask
(#468) - Move
num_dataloader_workers
out ofClassyTrainer
(#477) - Rename
lr
tovalue
in parameter schedulers (#417)