Name | Modified | Size | Downloads / Week |
---|---|---|---|
Readme.txt | 2019-10-29 | 944 Bytes | |
223PressureVelocity.txt | 2019-10-29 | 336 Bytes | |
linearRegressionXY.py | 2019-10-29 | 7.0 kB | |
Totals: 3 Items | 8.3 kB | 0 |
#!/usr/bin/python # # Regression Line function, with cubic spline enhancment. # rY = M*x + b (M = slope b = y intercept) # # b = avg(y) - avg(x)*M # # M = ((avg(x)*avg(y)) - avg(x*y)) / (sqr(avg(x)) - avg(sqr(x))) # # R2 = 1 - sum((y-rY)**2) / sum(((y-avgOfY)**2)) # # Usage: python linearRegression.py -d [n] -i [in file] -o [out file] # # -d Number of lines in output file (predicted values). # # Notes: -o optional, without -o the results print to stdout. # In file is known values (training data). # In file format key,value pair ex. 43700,3100 # Put file is predicted values. # # Example: # (base) C:python linearRegressionXY.py -d 100 -i 223PressureVelocity.txt -o 223PV.txt # # (base) C:python linearRegressionXY.py -d 100 -i 223PressureVelocity.txt # Enter input X value: 53700 # Predicted L/R Y Value: 2962.069 # R Squared: 0.960 # Standard Deviation: 97.460 #