Averaged N-Dependence Estimators (A1DE and A2DE) achieves highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models that have weaker (and hence less detrimental) independence assumptions than naive Bayes. The resulting algorithm is computationally efficient while delivering highly accurate classification on many learning tasks. For more information, see, G. Webb, J. Boughton, Z. Wang (2005). Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning. 58(1):5-24 and G.I. Webb, J. Boughton, F. Zheng, K.M. Ting and H. Salem (2012). Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive {Bayesian} classification. Machine Learning. 86(2):233-272.

Project Activity

See All Activity >

Follow Averaged N-Dependence Estimators - AnDE

Averaged N-Dependence Estimators - AnDE Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Averaged N-Dependence Estimators - AnDE!

Additional Project Details

Registered

2012-06-16