Averaged N-Dependence Estimators (A1DE and A2DE) achieves highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models that have weaker (and hence less detrimental) independence assumptions than naive Bayes. The resulting algorithm is computationally efficient while delivering highly accurate classification on many learning tasks. For more information, see, G. Webb, J. Boughton, Z. Wang (2005). Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning. 58(1):5-24 and G.I. Webb, J. Boughton, F. Zheng, K.M. Ting and H. Salem (2012). Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive {Bayesian} classification. Machine Learning. 86(2):233-272.

Project Activity

See All Activity >

Follow Averaged N-Dependence Estimators - AnDE

Averaged N-Dependence Estimators - AnDE Web Site

Other Useful Business Software
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Averaged N-Dependence Estimators - AnDE!

Additional Project Details

Registered

2012-06-16