auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. Before you go any further, try running the code. Load up some data (either a DataFrame, or a list of dictionaries, where each dictionary is a row of data). Make a column_descriptions dictionary that tells us which attribute name in each row represents the value we’re trying to predict. Pass all that into auto_ml, and see what happens! You can pass in your own function to perform feature engineering on the data. This will be called as the first step in the pipeline that auto_ml builds out. You will be passed the entire X dataset (not the y dataset), and are expected to return the entire X dataset. The advantage of including it in the pipeline is that it will then be applied to any data you want predictions on later.

Features

  • Pass in your own feature engineering function
  • Training data format
  • Use machine learning for analytics
  • Inerpret Predicted Probability Buckets for Classifiers
  • Interpret results
  • Categorical Ensembling

Project Samples

Project Activity

See All Activity >

Categories

Machine Learning

License

MIT License

Follow auto_ml

auto_ml Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

The database for AI-powered applications.

MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of auto_ml!

Additional Project Details

Programming Language

Python

Related Categories

Python Machine Learning Software

Registered

2022-08-12