|
From: <kk...@us...> - 2011-02-08 22:19:20
|
Revision: 114
http://python-control.svn.sourceforge.net/python-control/?rev=114&view=rev
Author: kkchen
Date: 2011-02-08 22:19:13 +0000 (Tue, 08 Feb 2011)
Log Message:
-----------
merging changes
bb...@ra...
Modified Paths:
--------------
branches/control-0.4a/examples/pvtol-lqr.py
branches/control-0.4a/examples/pvtol-nested-ss.py
branches/control-0.4a/examples/pvtol-nested.py
branches/control-0.4a/examples/secord-matlab.py
branches/control-0.4a/examples/slicot-test.py
branches/control-0.4a/src/freqplot.py
branches/control-0.4a/src/pzmap.py
branches/control-0.4a/src/statesp.py
branches/control-0.4a/src/xferfcn.py
Modified: branches/control-0.4a/examples/pvtol-lqr.py
===================================================================
--- branches/control-0.4a/examples/pvtol-lqr.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/examples/pvtol-lqr.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -119,7 +119,7 @@
subplot(221); title("Identity weights")
# plot(T, Y[:,1, 1], '-', T, Y[:,2, 2], '--'); hold(True);
-plot(Tx, Yx[0,:].T, '-', Ty, Yy[0,:].T, '--'); hold(True);
+plot(Tx.T, Yx[0,:].T, '-', Ty.T, Yy[0,:].T, '--'); hold(True);
plot([0, 10], [1, 1], 'k-'); hold(True);
axis([0, 10, -0.1, 1.4]);
@@ -141,9 +141,9 @@
[T3, Y3] = step(H1cx, T=linspace(0,10,100));
subplot(222); title("Effect of input weights")
-plot(T1, Y1[0,:].T, 'b-'); hold(True);
-plot(T2, Y2[0,:].T, 'b-'); hold(True);
-plot(T3, Y3[0,:].T, 'b-'); hold(True);
+plot(T1.T, Y1[0,:].T, 'b-'); hold(True);
+plot(T2.T, Y2[0,:].T, 'b-'); hold(True);
+plot(T3.T, Y3[0,:].T, 'b-'); hold(True);
plot([0 ,10], [1, 1], 'k-'); hold(True);
axis([0, 10, -0.1, 1.4]);
@@ -162,7 +162,7 @@
subplot(223); title("Output weighting")
[T2x, Y2x] = step(H2x, T=linspace(0,10,100));
[T2y, Y2y] = step(H2y, T=linspace(0,10,100));
-plot(T2x, Y2x[0,:].T, T2y, Y2y[0,:].T)
+plot(T2x.T, Y2x[0,:].T, T2y.T, Y2y[0,:].T)
ylabel('position');
xlabel('time'); ylabel('position');
legend(('x', 'y'), loc='lower right');
@@ -185,7 +185,7 @@
# step(H3x, H3y, 10);
[T3x, Y3x] = step(H3x, T=linspace(0,10,100));
[T3y, Y3y] = step(H3y, T=linspace(0,10,100));
-plot(T3x, Y3x[0,:].T, T3y, Y3y[0,:].T)
+plot(T3x.T, Y3x[0,:].T, T3y.T, Y3y[0,:].T)
title("Physically motivated weights")
xlabel('time');
legend(('x', 'y'), loc='lower right');
Modified: branches/control-0.4a/examples/pvtol-nested-ss.py
===================================================================
--- branches/control-0.4a/examples/pvtol-nested-ss.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/examples/pvtol-nested-ss.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -10,6 +10,7 @@
from matplotlib.pyplot import * # Grab MATLAB plotting functions
from control.matlab import * # MATLAB-like functions
+import numpy as np
# System parameters
m = 4; # mass of aircraft
@@ -107,7 +108,7 @@
subplot(phaseh);
semilogx([10^-4, 10^3], [-180, -180], 'k-')
hold(True);
-semilogx(w, phase, 'b-')
+semilogx(w, np.squeeze(phase), 'b-')
axis([10^-4, 10^3, -360, 0]);
xlabel('Frequency [deg]'); ylabel('Phase [deg]');
# set(gca, 'YTick', [-360, -270, -180, -90, 0]);
@@ -144,14 +145,15 @@
figure(9);
(Tvec, Yvec) = step(T, None, linspace(1, 20));
-plot(Tvec, Yvec); hold(True);
+plot(Tvec.T, Yvec.T); hold(True);
(Tvec, Yvec) = step(Co*S, None, linspace(1, 20));
-plot(Tvec, Yvec);
+plot(Tvec.T, Yvec.T);
+#TODO: PZmap for statespace systems has not yet been implemented.
figure(10); clf();
-(P, Z) = pzmap(T, Plot=True)
-print "Closed loop poles and zeros: ", P, Z
+#(P, Z) = pzmap(T, Plot=True)
+#print "Closed loop poles and zeros: ", P, Z
# Gang of Four
figure(11); clf();
Modified: branches/control-0.4a/examples/pvtol-nested.py
===================================================================
--- branches/control-0.4a/examples/pvtol-nested.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/examples/pvtol-nested.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -10,6 +10,7 @@
from matplotlib.pyplot import * # Grab MATLAB plotting functions
from control.matlab import * # MATLAB-like functions
+import numpy as np
# System parameters
m = 4; # mass of aircraft
@@ -23,8 +24,8 @@
Po = tf([1], [m, c, 0]); # outer loop (position)
# Use state space versions
-# Pi = tf2ss(Pi);
-# Po = tf2ss(Po);
+Pi = tf2ss(Pi);
+Po = tf2ss(Po);
#
# Inner loop control design
@@ -97,7 +98,7 @@
subplot(phaseh);
semilogx([10^-4, 10^3], [-180, -180], 'k-')
hold(True);
-semilogx(w, phase, 'b-')
+semilogx(w, np.squeeze(phase), 'b-')
axis([10^-4, 10^3, -360, 0]);
xlabel('Frequency [deg]'); ylabel('Phase [deg]');
# set(gca, 'YTick', [-360, -270, -180, -90, 0]);
@@ -134,10 +135,10 @@
figure(9);
(Tvec, Yvec) = step(T, None, linspace(1, 20));
-plot(Tvec, Yvec); hold(True);
+plot(Tvec.T, Yvec.T); hold(True);
(Tvec, Yvec) = step(Co*S, None, linspace(1, 20));
-plot(Tvec, Yvec);
+plot(Tvec.T, Yvec.T);
figure(10); clf();
(P, Z) = pzmap(T, Plot=True)
Modified: branches/control-0.4a/examples/secord-matlab.py
===================================================================
--- branches/control-0.4a/examples/secord-matlab.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/examples/secord-matlab.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -18,7 +18,7 @@
# Step response for the system
figure(1)
T, yout = step(sys)
-plot(T, yout)
+plot(T.T, yout.T)
# Bode plot for the system
figure(2)
Modified: branches/control-0.4a/examples/slicot-test.py
===================================================================
--- branches/control-0.4a/examples/slicot-test.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/examples/slicot-test.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -17,7 +17,7 @@
sys = ss(A, B, C, 0);
# Eigenvalue placement
-from slycot import sb01bd
+#from slycot import sb01bd
K = place(A, B, [-3, -2, -1])
print "Pole place: K = ", K
print "Pole place: eigs = ", np.linalg.eig(A - B * K)[0]
Modified: branches/control-0.4a/src/freqplot.py
===================================================================
--- branches/control-0.4a/src/freqplot.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/src/freqplot.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -177,7 +177,12 @@
# Select a default range if none is provided
if (omega == None):
omega = default_frequency_range(syslist)
-
+ # Interpolate between wmin and wmax if a tuple or list are provided
+ elif (isinstance(omega,list) | isinstance(omega,tuple)):
+ # Only accept tuple or list of length 2
+ if (len(omega) != 2):
+ raise ValueError("Supported frequency arguments are (wmin,wmax) tuple or list, or frequency vector. ")
+ omega = np.logspace(np.log10(omega[0]),np.log10(omega[1]),num=50,endpoint=True,base=10.0)
for sys in syslist:
if (sys.inputs > 1 or sys.outputs > 1):
#TODO: Add MIMO nyquist plots.
Modified: branches/control-0.4a/src/pzmap.py
===================================================================
--- branches/control-0.4a/src/pzmap.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/src/pzmap.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -42,6 +42,7 @@
import matplotlib.pyplot as plt
import scipy as sp
+import numpy as np
import xferfcn
# Compute poles and zeros for a system
@@ -49,10 +50,10 @@
def pzmap(sys, Plot=True):
"""Plot a pole/zero map for a transfer function"""
if (isinstance(sys, xferfcn.TransferFunction)):
- poles = sp.roots(sys.den);
- zeros = sp.roots(sys.num);
+ poles = sp.roots(np.squeeze(np.asarray(sys.den)));
+ zeros = sp.roots(np.squeeze(np.asarray(sys.num)));
else:
- raise TypeException
+ raise NotImplementedError("pzmap not implemented for state space systems yet.")
if (Plot):
# Plot the locations of the poles and zeros
Modified: branches/control-0.4a/src/statesp.py
===================================================================
--- branches/control-0.4a/src/statesp.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/src/statesp.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -73,7 +73,7 @@
"""
from numpy import all, angle, any, array, concatenate, cos, delete, dot, \
- empty, exp, eye, matrix, ones, pi, poly, poly1d, roots, sin, zeros
+ empty, exp, eye, matrix, ones, pi, poly, poly1d, roots, shape, sin, zeros
from numpy.random import rand, randn
from numpy.linalg import inv, det, solve
from numpy.linalg.linalg import LinAlgError
@@ -456,6 +456,8 @@
# TODO: transfer function to state space conversion is still buggy!
print "Warning: transfer function to state space conversion by td04ad \
is still buggy!"
+ #print num
+ #print shape(num)
ssout = td04ad(sys.inputs, sys.outputs, index, den, num)
states = ssout[0]
Modified: branches/control-0.4a/src/xferfcn.py
===================================================================
--- branches/control-0.4a/src/xferfcn.py 2011-02-08 22:19:07 UTC (rev 113)
+++ branches/control-0.4a/src/xferfcn.py 2011-02-08 22:19:13 UTC (rev 114)
@@ -344,14 +344,14 @@
def __div__(self, other):
"""Divide two LTI objects."""
+ # Convert the second argument to a transfer function.
+ other = _convertToTransferFunction(other)
+
if (self.inputs > 1 or self.outputs > 1 or
other.inputs > 1 or other.outputs > 1):
raise NotImplementedError("TransferFunction.__div__ is currently \
implemented only for SISO systems.")
- # Convert the second argument to a transfer function.
- other = _convertToTransferFunction(other)
-
num = polymul(self.num[0][0], other.den[0][0])
den = polymul(self.den[0][0], other.num[0][0])
@@ -487,8 +487,9 @@
computes the single denominator containing all the poles of sys.den, and
reports it as the array d. The output numerator array n is modified to
- use the common denominator. It is an sys.outputs-by-sys.inputs-by-
- [something] array.
+ use the common denominator; the coefficient arrays are also padded with
+ zeros to be the same size as d. n is an sys.outputs-by-sys.inputs-by-
+ len(d) array.
"""
@@ -588,16 +589,12 @@
# Multiply in the missing poles.
for p in missingpoles[i][j]:
num[i][j] = polymul(num[i][j], [1., -p])
- # Find the largest numerator polynomial size.
- largest = 0
+ # Pad all numerator polynomials with zeros so that the numerator arrays
+ # are the same size as the denominator.
for i in range(self.outputs):
for j in range(self.inputs):
- largest = max(largest, len(num[i][j]))
- # Pad all smaller numerator polynomials with zeros.
- for i in range(self.outputs):
- for j in range(self.inputs):
- num[i][j] = insert(num[i][j], zeros(largest - len(num[i][j])),
- zeros(largest - len(num[i][j])))
+ num[i][j] = insert(num[i][j], zeros(len(den) - len(num[i][j])),
+ zeros(len(den) - len(num[i][j])))
# Finally, convert the numerator to a 3-D array.
num = array(num)
# Remove trivial imaginary parts. Check for nontrivial imaginary parts.
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
|