From: John H. <jdh...@ac...> - 2004-10-01 16:37:29
|
>>>>> "Perry" == Perry Greenfield <pe...@st...> writes: >> Hi again, >> >> Yes, I had the thought that using C for the algorithm would be >> easier as well. There are actually some very well-written >> marching squares contouring algorithms in C already out there. >> I will try to find such an implementation and point you to it >> or send you the source code. >> Perry> Thanks, that would be helpful. In my search I didn't come Perry> across many. Keep in mind the license needs to be Perry> compatible with that of matplotlib. Of course, in addition to the license, there is the patent issue. I believe marching squares is patented. I know marching cubes is. http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/srchnum.htm&r=1&f=G&l=50&s1=4,710,876.WKU.&OS=PN/4,710,876&RS=PN/4,710,876 I checked the header of vtkMarchingSquares.cxx which states Program: Visualization Toolkit Module: $RCSfile: vtkMarchingSquares.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. THIS CLASS IS PATENTED UNDER UNITED STATES PATENT NUMBER 4,710,876 "System and Method for the Display of Surface Structures Contained Within the Interior Region of a Solid Body". Application of this software for commercial purposes requires a license grant from GE. Contact: but the patent number they reference which is linked above begins with A method and apparatus for displaying *three dimensional surface images* includes the utilization of a case table for rapid retrieval of surface approximation information. emphasis mine. So I don't know for sure what the patent status of the 2D algorithm is. JDH |