From: pybokeh <py...@gm...> - 2012-06-13 17:14:24
|
Check out linregress from scipy.stats module. Not sure if it will handle dates. Sample script below: from scipy.stats import pearsonr from scipy.stats import linregress from matplotlib import pyplot as plt import numpy as np sat = np.array([595,520,715,405,680,490,565]) gpa = np.array([3.4,3.2,3.9,2.3,3.9,2.5,3.5]) fig1 = plt.figure(1) ax = plt.subplot(1,1,1) pearson = pearsonr(sat, gpa) plt.scatter(sat,gpa, label="data") # Get linear regression parameters slope, intercept, r_value, p_value, std_err = linregress(sat, gpa) # Format the chart plt.xlabel("SAT Scores") plt.ylabel("GPA") plt.title("Scatter Plot with Linear Regression Fit\nY=a*X + b\na=%0.4f, b=%0.4f" % (slope, intercept)) plt.grid() # Create linear regression x values x_lr = sat # Create linear regression y values: Y = slope*X + intercept y_lr = slope * x_lr + intercept print "Pearson correlation coefficient: ", pearson[0] print "Fit x-values: ", str(x_lr) print "Fit y-values: ", str(y_lr) print "Fit slope: ",slope print "Fit intercept: ", intercept plt.plot(x_lr, y_lr, label="fit") plt.legend() plt.show() Regards, Daniel On Jun 13, 2012 12:32 PM, "Chris Withers" <ch...@si...> wrote: > Hi all, > > I have some time series of disk usage that I'd like to do a linear > regression on an plot on a nice graph with Mb used on the y-axis and > date on the x axis. > > I tried to use pylab.polyfit(dates, usage) where: > > dates = [datetime(x, y, z), datetime(a, b, c), ...] > usage = [12123234, 2234235235, ...] > > ...but polyfit doesn't like the dates. > > How should I do this? > > Any example of a nice plot and linear regression using matplotlib? > > cheers, > > Chris > > -- > Simplistix - Content Management, Batch Processing & Python Consulting > - http://www.simplistix.co.uk > > > ------------------------------------------------------------------------------ > Live Security Virtual Conference > Exclusive live event will cover all the ways today's security and > threat landscape has changed and how IT managers can respond. Discussions > will include endpoint security, mobile security and the latest in malware > threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/ > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > |