From: Pablo A. <pab...@ua...> - 2010-06-11 11:03:55
|
Hello! I wonder if there is a way to make 3d plots specifying arbitrary colors, instead of having the color be a function of the height. I was able to achieve this making minimal changes to the plot_surface method of Axes3D, adding as an optional keyword argument a function *cfun* which specifies the color (it specifies a real number that is mapped into a color by the color map *cmap*). But is there a standard way? Regard Pablo Angulo from matplotlib.colors import Normalize, colorConverter def plot_surface(self, X, Y, Z, *args, **kwargs): ''' Create a surface plot. By default it will be colored in shades of a solid color, but it also supports color mapping by supplying the *cmap* argument. ========== ================================================ Argument Description ========== ================================================ *X*, *Y*, Data values as numpy.arrays *Z* *rstride* Array row stride (step size) *cstride* Array column stride (step size) *color* Color of the surface patches *cmap* A colormap for the surface patches. *cfun* The function giving the color ========== ================================================ ''' had_data = self.has_data() rows, cols = Z.shape tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z) rstride = kwargs.pop('rstride', 10) cstride = kwargs.pop('cstride', 10) color = kwargs.pop('color', 'b') color = np.array(colorConverter.to_rgba(color)) cmap = kwargs.get('cmap', None) * cfun = kwargs.pop('cfun', None)* polys = [] normals = [] avgz = [] * if not cfun:* * cfun = lambda p:p[2]* for rs in np.arange(0, rows-1, rstride): for cs in np.arange(0, cols-1, cstride): ps = [] corners = [] for a, ta in [(X, tX), (Y, tY), (Z, tZ)]: ztop = a[rs][cs:min(cols, cs+cstride+1)] zleft = ta[min(cols-1, cs+cstride)][rs:min(rows, rs+rstride+1)] zbase = a[min(rows-1, rs+rstride)][cs:min(cols, cs+cstride+1):] zbase = zbase[::-1] zright = ta[cs][rs:min(rows, rs+rstride+1):] zright = zright[::-1] corners.append([ztop[0], ztop[-1], zbase[0], zbase[-1]]) z = np.concatenate((ztop, zleft, zbase, zright)) ps.append(z) # The construction leaves the array with duplicate points, which # are removed here. ps = zip(*ps) lastp = np.array([]) ps2 = [] avgzsum = 0.0 for p in ps: if p != lastp: ps2.append(p) lastp = p *avgzsum += cfun(p)* polys.append(ps2) avgz.append(avgzsum / len(ps2)) v1 = np.array(ps2[0]) - np.array(ps2[1]) v2 = np.array(ps2[2]) - np.array(ps2[0]) normals.append(np.cross(v1, v2)) polyc = art3d.Poly3DCollection(polys, *args, **kwargs) if cmap is not None: polyc.set_array(np.array(avgz)) polyc.set_linewidth(0) else: colors = self._shade_colors(color, normals) polyc.set_facecolors(colors) self.add_collection(polyc) self.auto_scale_xyz(X, Y, Z, had_data) return polyc |