From: <mme...@us...> - 2008-10-17 14:27:35
|
Revision: 6239 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=6239&view=rev Author: mmetz_bn Date: 2008-10-17 14:27:28 +0000 (Fri, 17 Oct 2008) Log Message: ----------- minor hist and hist docs updates Modified Paths: -------------- trunk/matplotlib/lib/matplotlib/axes.py Modified: trunk/matplotlib/lib/matplotlib/axes.py =================================================================== --- trunk/matplotlib/lib/matplotlib/axes.py 2008-10-17 14:27:26 UTC (rev 6238) +++ trunk/matplotlib/lib/matplotlib/axes.py 2008-10-17 14:27:28 UTC (rev 6239) @@ -6183,9 +6183,10 @@ Keyword arguments: *bins*: - either an integer number of bins or a sequence giving the - bins. *x* are the data to be binned. *x* can be an array or a - 2D array with multiple data in its columns. Note, if *bins* + Either an integer number of bins or a sequence giving the + bins. *x* are the data to be binned. *x* can be an array, + a 2D array with multiple data in its columns, or a list of + arrays with data of different length. Note, if *bins* is an integer input argument=numbins, *bins* + 1 bin edges will be returned, compatible with the semantics of :func:`numpy.histogram` with the *new* = True argument. @@ -6211,7 +6212,7 @@ gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. If *normed* is also *True* then the histogram is normalized such that the - last bin equals one. If *cumulative* evaluates to less than 0 + last bin equals 1. If *cumulative* evaluates to less than 0 (e.g. -1), the direction of accumulation is reversed. In this case, if *normed* is also *True*, then the histogram is normalized such that the first bin equals 1. @@ -6219,13 +6220,14 @@ *histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ] The type of histogram to draw. - - 'bar' is a traditional bar-type histogram + - 'bar' is a traditional bar-type histogram. If multiple data + are given the bars are aranged side by side. - 'barstacked' is a bar-type histogram where multiple - data are stacked on top of each other. + data are stacked on top of each other. - 'step' generates a lineplot that is by default - unfilled + unfilled. - 'stepfilled' generates a lineplot that is by default filled. @@ -6233,9 +6235,9 @@ *align*: ['left' | 'mid' | 'right' ] Controls how the histogram is plotted. - - 'left': bars are centered on the left bin edges + - 'left': bars are centered on the left bin edges. - - 'mid': bars are centered between the bin edges + - 'mid': bars are centered between the bin edges. - 'right': bars are centered on the right bin edges. @@ -6245,9 +6247,9 @@ the left edges. *rwidth*: - the relative width of the bars as a fraction of the bin + The relative width of the bars as a fraction of the bin width. If *None*, automatically compute the width. Ignored - if *histtype* = 'step'. + if *histtype* = 'step' or 'stepfilled'. *log*: If *True*, the histogram axis will be set to a log scale. @@ -6280,7 +6282,8 @@ 'hist now uses the rwidth to give relative width and not absolute width') try: - x = np.transpose(np.asarray(x).copy()) + # make sure a copy is created: don't use asarray + x = np.transpose(np.array(x)) if len(x.shape)==1: x.shape = (1,x.shape[0]) elif len(x.shape)==2 and x.shape[1]<x.shape[0]: @@ -6290,7 +6293,7 @@ if iterable(x[0]) and not is_string_like(x[0]): tx = [] for i in xrange(len(x)): - tx.append( np.asarray(x[i]).copy() ) + tx.append( np.array(x[i]) ) x = tx n = [] This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |