From: <jd...@us...> - 2008-06-27 15:42:47
|
Revision: 5693 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5693&view=rev Author: jdh2358 Date: 2008-06-27 08:42:44 -0700 (Fri, 27 Jun 2008) Log Message: ----------- cleaned up some pyplots examples that got funkily duplicated Modified Paths: -------------- trunk/matplotlib/doc/pyplots/boxplot_demo.py trunk/matplotlib/doc/pyplots/contour_demo.py Modified: trunk/matplotlib/doc/pyplots/boxplot_demo.py =================================================================== --- trunk/matplotlib/doc/pyplots/boxplot_demo.py 2008-06-27 15:40:06 UTC (rev 5692) +++ trunk/matplotlib/doc/pyplots/boxplot_demo.py 2008-06-27 15:42:44 UTC (rev 5693) @@ -27,119 +27,3 @@ plt.boxplot(data) plt.show() -import numpy as np -import matplotlib.pyplot as plt - -spread = np.random.rand(50) * 100 -center = np.ones(25) * 50 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -data = np.concatenate((spread, center, flier_high, flier_low), 0) - -# fake up some more data -spread = np.random.rand(50) * 100 -center = np.ones(25) * 40 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 ) -data.shape = (-1, 1) -d2.shape = (-1, 1) - -#data = concatenate( (data, d2), 1 ) -# Making a 2-D array only works if all the columns are the -# same length. If they are not, then use a list instead. -# This is actually more efficient because boxplot converts -# a 2-D array into a list of vectors internally anyway. -data = [data, d2, d2[::2,0]] -# multiple box plots on one figure - -plt.boxplot(data) -plt.show() - -import numpy as np -import matplotlib.pyplot as plt - -spread = np.random.rand(50) * 100 -center = np.ones(25) * 50 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -data = np.concatenate((spread, center, flier_high, flier_low), 0) - -# fake up some more data -spread = np.random.rand(50) * 100 -center = np.ones(25) * 40 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 ) -data.shape = (-1, 1) -d2.shape = (-1, 1) - -#data = concatenate( (data, d2), 1 ) -# Making a 2-D array only works if all the columns are the -# same length. If they are not, then use a list instead. -# This is actually more efficient because boxplot converts -# a 2-D array into a list of vectors internally anyway. -data = [data, d2, d2[::2,0]] -# multiple box plots on one figure - -plt.boxplot(data) -plt.show() - -import numpy as np -import matplotlib.pyplot as plt - -spread = np.random.rand(50) * 100 -center = np.ones(25) * 50 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -data = np.concatenate((spread, center, flier_high, flier_low), 0) - -# fake up some more data -spread = np.random.rand(50) * 100 -center = np.ones(25) * 40 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 ) -data.shape = (-1, 1) -d2.shape = (-1, 1) - -#data = concatenate( (data, d2), 1 ) -# Making a 2-D array only works if all the columns are the -# same length. If they are not, then use a list instead. -# This is actually more efficient because boxplot converts -# a 2-D array into a list of vectors internally anyway. -data = [data, d2, d2[::2,0]] -# multiple box plots on one figure - -plt.boxplot(data) -plt.show() - -import numpy as np -import matplotlib.pyplot as plt - -spread = np.random.rand(50) * 100 -center = np.ones(25) * 50 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -data = np.concatenate((spread, center, flier_high, flier_low), 0) - -# fake up some more data -spread = np.random.rand(50) * 100 -center = np.ones(25) * 40 -flier_high = np.random.rand(10) * 100 + 100 -flier_low = np.random.rand(10) * -100 -d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 ) -data.shape = (-1, 1) -d2.shape = (-1, 1) - -#data = concatenate( (data, d2), 1 ) -# Making a 2-D array only works if all the columns are the -# same length. If they are not, then use a list instead. -# This is actually more efficient because boxplot converts -# a 2-D array into a list of vectors internally anyway. -data = [data, d2, d2[::2,0]] -# multiple box plots on one figure - -plt.boxplot(data) -plt.show() - Modified: trunk/matplotlib/doc/pyplots/contour_demo.py =================================================================== --- trunk/matplotlib/doc/pyplots/contour_demo.py 2008-06-27 15:40:06 UTC (rev 5692) +++ trunk/matplotlib/doc/pyplots/contour_demo.py 2008-06-27 15:42:44 UTC (rev 5693) @@ -64,267 +64,3 @@ #savefig('contour_demo') plt.show() -#!/usr/bin/env python -""" -Illustrate simple contour plotting, contours on an image with -a colorbar for the contours, and labelled contours. - -See also contour_image.py. -""" -import matplotlib -import numpy as np -import matplotlib.cm as cm -import matplotlib.mlab as mlab -import matplotlib.pyplot as plt - -matplotlib.rcParams['xtick.direction'] = 'out' -matplotlib.rcParams['ytick.direction'] = 'out' - -delta = 0.025 -x = np.arange(-3.0, 3.0, delta) -y = np.arange(-2.0, 2.0, delta) -X, Y = np.meshgrid(x, y) -Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) -Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) -# difference of Gaussians -Z = 10.0 * (Z2 - Z1) - - -# You can use a colormap to specify the colors; the default -# colormap will be used for the contour lines -plt.figure() -im = plt.imshow(Z, interpolation='bilinear', origin='lower', - cmap=cm.gray, extent=(-3,3,-2,2)) -levels = np.arange(-1.2, 1.6, 0.2) -CS = plt.contour(Z, levels, - origin='lower', - linewidths=2, - extent=(-3,3,-2,2)) - -#Thicken the zero contour. -zc = CS.collections[6] -plt.setp(zc, linewidth=4) - -plt.clabel(CS, levels[1::2], # label every second level - inline=1, - fmt='%1.1f', - fontsize=14) - -# make a colorbar for the contour lines -CB = plt.colorbar(CS, shrink=0.8, extend='both') - -plt.title('Lines with colorbar') -#plt.hot() # Now change the colormap for the contour lines and colorbar -plt.flag() - -# We can still add a colorbar for the image, too. -CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8) - -# This makes the original colorbar look a bit out of place, -# so let's improve its position. - -l,b,w,h = plt.gca().get_position().bounds -ll,bb,ww,hh = CB.ax.get_position().bounds -CB.ax.set_position([ll, b+0.1*h, ww, h*0.8]) - - -#savefig('contour_demo') -plt.show() -#!/usr/bin/env python -""" -Illustrate simple contour plotting, contours on an image with -a colorbar for the contours, and labelled contours. - -See also contour_image.py. -""" -import matplotlib -import numpy as np -import matplotlib.cm as cm -import matplotlib.mlab as mlab -import matplotlib.pyplot as plt - -matplotlib.rcParams['xtick.direction'] = 'out' -matplotlib.rcParams['ytick.direction'] = 'out' - -delta = 0.025 -x = np.arange(-3.0, 3.0, delta) -y = np.arange(-2.0, 2.0, delta) -X, Y = np.meshgrid(x, y) -Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) -Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) -# difference of Gaussians -Z = 10.0 * (Z2 - Z1) - - -# You can use a colormap to specify the colors; the default -# colormap will be used for the contour lines -plt.figure() -im = plt.imshow(Z, interpolation='bilinear', origin='lower', - cmap=cm.gray, extent=(-3,3,-2,2)) -levels = np.arange(-1.2, 1.6, 0.2) -CS = plt.contour(Z, levels, - origin='lower', - linewidths=2, - extent=(-3,3,-2,2)) - -#Thicken the zero contour. -zc = CS.collections[6] -plt.setp(zc, linewidth=4) - -plt.clabel(CS, levels[1::2], # label every second level - inline=1, - fmt='%1.1f', - fontsize=14) - -# make a colorbar for the contour lines -CB = plt.colorbar(CS, shrink=0.8, extend='both') - -plt.title('Lines with colorbar') -#plt.hot() # Now change the colormap for the contour lines and colorbar -plt.flag() - -# We can still add a colorbar for the image, too. -CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8) - -# This makes the original colorbar look a bit out of place, -# so let's improve its position. - -l,b,w,h = plt.gca().get_position().bounds -ll,bb,ww,hh = CB.ax.get_position().bounds -CB.ax.set_position([ll, b+0.1*h, ww, h*0.8]) - - -#savefig('contour_demo') -plt.show() -#!/usr/bin/env python -""" -Illustrate simple contour plotting, contours on an image with -a colorbar for the contours, and labelled contours. - -See also contour_image.py. -""" -import matplotlib -import numpy as np -import matplotlib.cm as cm -import matplotlib.mlab as mlab -import matplotlib.pyplot as plt - -matplotlib.rcParams['xtick.direction'] = 'out' -matplotlib.rcParams['ytick.direction'] = 'out' - -delta = 0.025 -x = np.arange(-3.0, 3.0, delta) -y = np.arange(-2.0, 2.0, delta) -X, Y = np.meshgrid(x, y) -Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) -Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) -# difference of Gaussians -Z = 10.0 * (Z2 - Z1) - - -# You can use a colormap to specify the colors; the default -# colormap will be used for the contour lines -plt.figure() -im = plt.imshow(Z, interpolation='bilinear', origin='lower', - cmap=cm.gray, extent=(-3,3,-2,2)) -levels = np.arange(-1.2, 1.6, 0.2) -CS = plt.contour(Z, levels, - origin='lower', - linewidths=2, - extent=(-3,3,-2,2)) - -#Thicken the zero contour. -zc = CS.collections[6] -plt.setp(zc, linewidth=4) - -plt.clabel(CS, levels[1::2], # label every second level - inline=1, - fmt='%1.1f', - fontsize=14) - -# make a colorbar for the contour lines -CB = plt.colorbar(CS, shrink=0.8, extend='both') - -plt.title('Lines with colorbar') -#plt.hot() # Now change the colormap for the contour lines and colorbar -plt.flag() - -# We can still add a colorbar for the image, too. -CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8) - -# This makes the original colorbar look a bit out of place, -# so let's improve its position. - -l,b,w,h = plt.gca().get_position().bounds -ll,bb,ww,hh = CB.ax.get_position().bounds -CB.ax.set_position([ll, b+0.1*h, ww, h*0.8]) - - -#savefig('contour_demo') -plt.show() -#!/usr/bin/env python -""" -Illustrate simple contour plotting, contours on an image with -a colorbar for the contours, and labelled contours. - -See also contour_image.py. -""" -import matplotlib -import numpy as np -import matplotlib.cm as cm -import matplotlib.mlab as mlab -import matplotlib.pyplot as plt - -matplotlib.rcParams['xtick.direction'] = 'out' -matplotlib.rcParams['ytick.direction'] = 'out' - -delta = 0.025 -x = np.arange(-3.0, 3.0, delta) -y = np.arange(-2.0, 2.0, delta) -X, Y = np.meshgrid(x, y) -Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) -Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) -# difference of Gaussians -Z = 10.0 * (Z2 - Z1) - - -# You can use a colormap to specify the colors; the default -# colormap will be used for the contour lines -plt.figure() -im = plt.imshow(Z, interpolation='bilinear', origin='lower', - cmap=cm.gray, extent=(-3,3,-2,2)) -levels = np.arange(-1.2, 1.6, 0.2) -CS = plt.contour(Z, levels, - origin='lower', - linewidths=2, - extent=(-3,3,-2,2)) - -#Thicken the zero contour. -zc = CS.collections[6] -plt.setp(zc, linewidth=4) - -plt.clabel(CS, levels[1::2], # label every second level - inline=1, - fmt='%1.1f', - fontsize=14) - -# make a colorbar for the contour lines -CB = plt.colorbar(CS, shrink=0.8, extend='both') - -plt.title('Lines with colorbar') -#plt.hot() # Now change the colormap for the contour lines and colorbar -plt.flag() - -# We can still add a colorbar for the image, too. -CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8) - -# This makes the original colorbar look a bit out of place, -# so let's improve its position. - -l,b,w,h = plt.gca().get_position().bounds -ll,bb,ww,hh = CB.ax.get_position().bounds -CB.ax.set_position([ll, b+0.1*h, ww, h*0.8]) - - -#savefig('contour_demo') -plt.show() This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |