You can subscribe to this list here.
2007 |
Jan
|
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
(115) |
Aug
(120) |
Sep
(137) |
Oct
(170) |
Nov
(461) |
Dec
(263) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2008 |
Jan
(120) |
Feb
(74) |
Mar
(35) |
Apr
(74) |
May
(245) |
Jun
(356) |
Jul
(240) |
Aug
(115) |
Sep
(78) |
Oct
(225) |
Nov
(98) |
Dec
(271) |
2009 |
Jan
(132) |
Feb
(84) |
Mar
(74) |
Apr
(56) |
May
(90) |
Jun
(79) |
Jul
(83) |
Aug
(296) |
Sep
(214) |
Oct
(76) |
Nov
(82) |
Dec
(66) |
2010 |
Jan
(46) |
Feb
(58) |
Mar
(51) |
Apr
(77) |
May
(58) |
Jun
(126) |
Jul
(128) |
Aug
(64) |
Sep
(50) |
Oct
(44) |
Nov
(48) |
Dec
(54) |
2011 |
Jan
(68) |
Feb
(52) |
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
(1) |
2018 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
From: <as...@us...> - 2007-10-27 06:23:15
|
Revision: 4036 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4036&view=rev Author: astraw Date: 2007-10-26 23:23:13 -0700 (Fri, 26 Oct 2007) Log Message: ----------- new list Modified Paths: -------------- trunk/py4science/doc/linkfest Modified: trunk/py4science/doc/linkfest =================================================================== --- trunk/py4science/doc/linkfest 2007-10-27 04:31:54 UTC (rev 4035) +++ trunk/py4science/doc/linkfest 2007-10-27 06:23:13 UTC (rev 4036) @@ -76,3 +76,6 @@ svn diff : see the changes since the last commit - useful for making patches += mailing list = + + py4science: http://code.astraw.com/cgi-bin/mailman/listinfo/py4science This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-27 04:32:05
|
Revision: 4035 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4035&view=rev Author: jdh2358 Date: 2007-10-26 21:31:54 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added andy Modified Paths: -------------- trunk/py4science/workbook/main.pdf trunk/py4science/workbook/main.tex Modified: trunk/py4science/workbook/main.pdf =================================================================== --- trunk/py4science/workbook/main.pdf 2007-10-27 04:10:21 UTC (rev 4034) +++ trunk/py4science/workbook/main.pdf 2007-10-27 04:31:54 UTC (rev 4035) @@ -123,13 +123,14 @@ << /S /GoTo /D [86 0 R /Fit ] >> endobj 88 0 obj << -/Length 292 +/Length 321 /Filter /FlateDecode >> stream -xڍQ;O\xC30\xDE\xF3+<ڃ\x9F_\x8F\xBC -\xEAT\x89H\x94\xA1\xA4\xA1\x8DJm\xB5\xFCz\xEC\x86VEb\xA8,\xD9:/\xDF\x99\xCAY0\xE0\x95Ҍ\x8C\x81`\x89X\xBB\xAD[e\xEC\xA1\xC2_\x8E\xD5(\x9F\x8BP\xE9\xB0B\xCD\xE4\xB9\xC9MS]M\x8Cch\xC1X\xAFY\xF3δR\xA0\x9D\xAF\x99G\xB5Ɋf\xF9\xC2gâ\xDD\xF5\xED\xE2CH\xE3\x89?\xB5}\x85Q|'\x90\xF7B"\x9F+c\xDBz~\x9B\xB6\xE5\xE6s\xE3J\xBC6SF\xD11\xA9P+:8\xF7q\xB4\x9C}f\x91\xACS<\xD0e |
From: <jd...@us...> - 2007-10-27 04:10:25
|
Revision: 4034 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4034&view=rev Author: jdh2358 Date: 2007-10-26 21:10:21 -0700 (Fri, 26 Oct 2007) Log Message: ----------- late nite pomona workbook build Modified Paths: -------------- trunk/py4science/intro_talk/intro_python_scicomp.lyx Modified: trunk/py4science/intro_talk/intro_python_scicomp.lyx =================================================================== --- trunk/py4science/intro_talk/intro_python_scicomp.lyx 2007-10-27 04:09:13 UTC (rev 4033) +++ trunk/py4science/intro_talk/intro_python_scicomp.lyx 2007-10-27 04:10:21 UTC (rev 4034) @@ -298,14 +298,14 @@ \end_layout \begin_layout Date -University of Michigan at Ann Arbor +Claremont Colleges \newline -April 13, 2007 +Oct 27, 2007 \begin_inset OptArg status open \begin_layout Standard -U Mich, 04/13/06 +Pomona, 10/27/07 \end_layout \end_inset This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-27 04:09:16
|
Revision: 4033 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4033&view=rev Author: jdh2358 Date: 2007-10-26 21:09:13 -0700 (Fri, 26 Oct 2007) Log Message: ----------- late nite pomona workbook build Modified Paths: -------------- trunk/py4science/workbook/convolution.tex trunk/py4science/workbook/intro_stats.tex trunk/py4science/workbook/main.pdf trunk/py4science/workbook/stats_distributions.tex Modified: trunk/py4science/workbook/convolution.tex =================================================================== --- trunk/py4science/workbook/convolution.tex 2007-10-27 04:00:59 UTC (rev 4032) +++ trunk/py4science/workbook/convolution.tex 2007-10-27 04:09:13 UTC (rev 4033) @@ -4,7 +4,7 @@ The output of a linear system is given by the convolution of its impulse response function with the input. Mathematically \[ - y(t) = \int_0^\t x(\tau)r(t-\tau)d\tau + y(t) = \int_0^t x(\tau)r(t-\tau)d\tau \] This fundamental relationship lies at the heart of linear systems analysis. It is used to model the dynamics of calcium buffers in @@ -85,7 +85,7 @@ function $r$ by studying the amplitude and phase spectrum of its transform $R$. In the example below, however, we simply use the multiplication property to perform the same convolution in Fourier -space to confirm the numerical result from \textt{numpy.convolve}. +space to confirm the numerical result from \texttt{numpy.convolve}. \lstinputlisting[label=code:convolution_demo,caption={IGNORED}]{skel/convolution_demo_skel.py} Modified: trunk/py4science/workbook/intro_stats.tex =================================================================== --- trunk/py4science/workbook/intro_stats.tex 2007-10-27 04:00:59 UTC (rev 4032) +++ trunk/py4science/workbook/intro_stats.tex 2007-10-27 04:09:13 UTC (rev 4033) @@ -1,16 +1,16 @@ -\textt{R}, a statistical package based on \textt{S}, is viewd by some +\texttt{R}, a statistical package based on \texttt{S}, is viewd by some as the best statistical software on the planet, and in the open source world it is the clear choice for sophisticated statistical analysis. -Like python, \textt{R} is an interpreted language written in C with an +Like python, \texttt{R} is an interpreted language written in C with an interactive shell. Unlike python, which is a general purpose -programming language, \textt{R} is a specialized statistical language. +programming language, \texttt{R} is a specialized statistical language. Since python is a excellent glue language, with facilities for providing a transparent interface to FORTRAN, C, C++ and other languages, it should come as no surprise that you can harness -\textt{R}'s immense statistical power from python, through the +\texttt{R}'s immense statistical power from python, through the \texttt{rpy} third part extension library. -However, \textt{R} is not without its warts. As a language, it lacks +However, \texttt{R} is not without its warts. As a language, it lacks python's elegance and advanced programming constructs and idioms. It is also GPL, which means you cannot distribute code based upon it unhindered: the code you distribute must be GPL as well (python, and @@ -19,10 +19,10 @@ application). Fortunately, the core tools scientific libraries for python (primarily -\textt{numpy} and \texttt{scipy.stats}) provide a wide array of +\texttt{numpy} and \texttt{scipy.stats}) provide a wide array of statistical tools, from basic descriptive statistics (mean, variance, skew, kurtosis, correlation, \dots) to hypothesis testing (t-tests, -$\Chi$-Square, analysis of variance, general linear models, \dots) to +$\chi$-Square, analysis of variance, general linear models, \dots) to analytical and numerical tools for working with almost every discrete and continuous statistical distribution you can think of (normal, gamma, poisson, weibull, lognormal, levy stable, \dots). Modified: trunk/py4science/workbook/main.pdf =================================================================== --- trunk/py4science/workbook/main.pdf 2007-10-27 04:00:59 UTC (rev 4032) +++ trunk/py4science/workbook/main.pdf 2007-10-27 04:09:13 UTC (rev 4033) @@ -171,7 +171,7 @@ /ProcSet [ /PDF ] >> endobj 104 0 obj << -/Length 1521 +/Length 1520 /Filter /FlateDecode >> stream @@ -181,8 +181,9 @@ \xBF;\xF8N븫+\xA9K\xE1(\xDC\xC7N\xD67\xA5\x94\x84\xB1N0}k\xCC\xE3V?L\x99\xD9qOB3a\xA1\xA3X\xEEI4\xC1\x94'#WK\x9F\xD8\xCE`\x87CqySKu9\x9C\x9D_\xEB\xAB\֫\xB3\x8B\xA6g\x9D\xE9 УnC\xE5慜\xEF\xD5/\x9B\xAA\x8C\xF2n\xA4}u#j&\x9EV\xDFN<\xFA*A\xA8ۅ,\xD6M0\xA5o\x84\xE1\xC2\xF9\xE0\xF4-\x9D]A\xD1ݿ\xE7b7 |
From: <jd...@us...> - 2007-10-27 04:01:05
|
Revision: 4032 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4032&view=rev Author: jdh2358 Date: 2007-10-26 21:00:59 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added a few more workbook examples Modified Paths: -------------- trunk/py4science/examples/skel/stats_descriptives_skel.py trunk/py4science/examples/stats_descriptives.py trunk/py4science/workbook/convolution.tex trunk/py4science/workbook/intro_stats.tex trunk/py4science/workbook/stats_descriptives.tex trunk/py4science/workbook/stats_distributions.tex Modified: trunk/py4science/examples/skel/stats_descriptives_skel.py =================================================================== --- trunk/py4science/examples/skel/stats_descriptives_skel.py 2007-10-26 20:21:23 UTC (rev 4031) +++ trunk/py4science/examples/skel/stats_descriptives_skel.py 2007-10-27 04:00:59 UTC (rev 4032) @@ -56,14 +56,27 @@ maxlags : max number of lags for the autocorr - detrend : a function used to detrend the data for the correlation and spectral functions + detrend : a function used to detrend the data for the + correlation and spectral functions fmt : the plot format string """ data = self.samples - class Bunch: pass - c = Bunch() + # Here we use a rather strange idiom: we create an empty do + # nothing class C and simply attach attributes to it for + # return value (which we carefully describe in the docstring). + # The alternative is either to return a tuple a,b,c,d or a + # dictionary {'a':someval, 'b':someotherval} but both of these + # methods have problems. If you return a tuple, and later + # want to return something new, you have to change all the + # code that calls this function. Dictionaries work fine, but + # I find the client code harder to use d['a'] vesus d.a. The + # final alternative, which is most suitable for production + # code, is to define a custom class to store (and pretty + # print) your return object + class C: pass + c = C() N = 5 fig = c.fig = figfunc() ax = c.ax1 = fig.add_subplot(N,1,1) Modified: trunk/py4science/examples/stats_descriptives.py =================================================================== --- trunk/py4science/examples/stats_descriptives.py 2007-10-26 20:21:23 UTC (rev 4031) +++ trunk/py4science/examples/stats_descriptives.py 2007-10-27 04:00:59 UTC (rev 4032) @@ -72,6 +72,18 @@ """ data = self.samples + # Here we use a rather strange idiom: we create an empty do + # nothing class C and simply attach attributes to it for + # return value (which we carefully describe in the docstring). + # The alternative is either to return a tuple a,b,c,d or a + # dictionary {'a':someval, 'b':someotherval} but both of these + # methods have problems. If you return a tuple, and later + # want to return something new, you have to change all the + # code that calls this function. Dictionaries work fine, but + # I find the client code harder to use d['a'] vesus d.a. The + # final alternative, which is most suitable for production + # code, is to define a custom class to store (and pretty + # print) your return object class C: pass c = C() N = 5 Modified: trunk/py4science/workbook/convolution.tex =================================================================== --- trunk/py4science/workbook/convolution.tex 2007-10-26 20:21:23 UTC (rev 4031) +++ trunk/py4science/workbook/convolution.tex 2007-10-27 04:00:59 UTC (rev 4032) @@ -1,14 +1,61 @@ \section{Convolution} \label{sec:convolution} +The output of a linear system is given by the convolution of its +impulse response function with the input. Mathematically +\[ + y(t) = \int_0^\t x(\tau)r(t-\tau)d\tau +\] +This fundamental relationship lies at the heart of linear systems +analysis. It is used to model the dynamics of calcium buffers in +neuronal synapses, where incoming action potentials are represented as +Dirac $\delta$-functions and the calcium stores are represented with a +response function with multiple exponential time constants. It is +used in microscopy, in which the image distortions introduced by the +lenses are \textit{deconvolved} out using a measured point spread +function to provide a better picture of the true image input. It is +essential in structural engineering to determine how materials respond +to shocks. +The impulse response function $r$ is the system response to a +pulsatile input. For example, in Figure~\ref{fig:convolve_explain} +below, the response function is the sum of two exponentials with +different time constants and signs. This is a typical function used +to model synaptic current following a neuronal action potential. The +figure shows three $\delta$ inputs at different times and with +different amplitudes. The corresponsing impulse response for each +input is shown following it, and is color coded with the impulse input +color. If the system response is linear, by definition, the response +to a sum of inputs is the sum of the responses to the individual +inputs, and the lower panel shows the sum of the responses, or +equivalently, the convolution of the impulse response function with +the input function. + \begin{center}% \begin{figure} \begin{centering}\includegraphics[width=4in]{fig/convolve_explain}\par\end{centering} -\caption{\label{fig:convolve_explain}The output of a linear system to a series of impulse inputs is equal to the sum of the scaled and time shifted impulse response functions.} +\caption{\label{fig:convolve_explain}The output of a linear system to +a series of impulse inputs is equal to the sum of the scaled and time +shifted impulse response functions.} \end{figure} \par\end{center} +In Figure~\ref{fig:convolve_explain}, the summing of the impulse +response function over the three inputs is conceptually and visually +easy to understand. Some find the concept of a convolution of an +impulse response function with a continuos time function, such as a +sinusoid or a noise process, conceptually more difficult. It +shouldn't be. By the \textit{sampling theorem}, we can represent any +finite bandwidth continuous time signal as the sum of Dirac-$\delta$ +functions where the height of the $\delta$ function at each time point +is simply the amplitude of the signal at that time point. The only +requirement is that the sampling frequency be at least as high as the +Nyquist frequency, defined as the highest spectral frequency in the +signal divided by 2. See Figure~\ref{fig:convolve_deltas} for a +representation of a delta function sampling of a damped, oscillatory, +exponential function. + + \begin{center}% \begin{figure} \begin{centering}\includegraphics[width=4in]{fig/convolve_deltas}\par\end{centering} @@ -17,6 +64,29 @@ \par\end{center} +In the exercise below, we will convolve a sample from the normal +distribution (white noise) with a double exponential impulse response +function. Such a function acts as a low pass filter, so the resultant +output will look considerably smoother than the input. You can use +\texttt{numpy.convolve} to perform the convolution numerically. + +We also explore the important relationship that a convolution in the +tempoeral (or spatial) domain becomes a multiplication in the spectral +domain, which is mathematically much easier to work with. +\[ +Y = R*X +\] + +where $Y$, $X$, and $R$ are the Fourier transforms of the respective +variable in the temporal convolution equation above. The Fourier +transform of the impulse response function serves as an amplitude +weighting and phase shifting operator for each frequency component. +Thus, we can get deeper insight into the effects of impulse response +function $r$ by studying the amplitude and phase spectrum of its +transform $R$. In the example below, however, we simply use the +multiplication property to perform the same convolution in Fourier +space to confirm the numerical result from \textt{numpy.convolve}. + \lstinputlisting[label=code:convolution_demo,caption={IGNORED}]{skel/convolution_demo_skel.py} Modified: trunk/py4science/workbook/intro_stats.tex =================================================================== --- trunk/py4science/workbook/intro_stats.tex 2007-10-26 20:21:23 UTC (rev 4031) +++ trunk/py4science/workbook/intro_stats.tex 2007-10-27 04:00:59 UTC (rev 4032) @@ -1 +1,31 @@ -TODO \ No newline at end of file +\textt{R}, a statistical package based on \textt{S}, is viewd by some +as the best statistical software on the planet, and in the open source +world it is the clear choice for sophisticated statistical analysis. +Like python, \textt{R} is an interpreted language written in C with an +interactive shell. Unlike python, which is a general purpose +programming language, \textt{R} is a specialized statistical language. +Since python is a excellent glue language, with facilities for +providing a transparent interface to FORTRAN, C, C++ and other +languages, it should come as no surprise that you can harness +\textt{R}'s immense statistical power from python, through the +\texttt{rpy} third part extension library. + +However, \textt{R} is not without its warts. As a language, it lacks +python's elegance and advanced programming constructs and idioms. It +is also GPL, which means you cannot distribute code based upon it +unhindered: the code you distribute must be GPL as well (python, and +the core scientific extension libraries, carry a more permissive +license which support distribution in closed source, proprietary +application). + +Fortunately, the core tools scientific libraries for python (primarily +\textt{numpy} and \texttt{scipy.stats}) provide a wide array of +statistical tools, from basic descriptive statistics (mean, variance, +skew, kurtosis, correlation, \dots) to hypothesis testing (t-tests, +$\Chi$-Square, analysis of variance, general linear models, \dots) to +analytical and numerical tools for working with almost every discrete +and continuous statistical distribution you can think of (normal, +gamma, poisson, weibull, lognormal, levy stable, \dots). + + + Modified: trunk/py4science/workbook/stats_descriptives.tex =================================================================== --- trunk/py4science/workbook/stats_descriptives.tex 2007-10-26 20:21:23 UTC (rev 4031) +++ trunk/py4science/workbook/stats_descriptives.tex 2007-10-27 04:00:59 UTC (rev 4032) @@ -1,7 +1,49 @@ \section{Descriptive statistics} \label{sec:stats_descriptives} +The first step in any statistical analysis should be to describe, +charaterize and importantly, visualize your data. The normal +distribution (aka Gaussian or bell curve) lies at the heart of much of +formal statistical analysis, and normal distributions have the tidy +property that they are completely characterized by their mean and +variance. As you may have observed in your interactions with family +and friends, most of the world is not normal, and many statistical +analyses are flawed by summarizing data with just the mean and +standard deviation (square root of variance) and associated +signficance tests (eg the T-Test) as if it were normally distributed +data. +In the exercise below, we write a class to provide descriptive +statistics of a data set passed into the constructor, with class +methods to pretty print the results and to create a battery of +standard plots which may show structure missing in a casual analysis. +Many new programmers, or even experienced programmers used to a +proceedural environment, are uncomfortable with the idea of classes, +having hear their geekier programmer friends talk about them but not +really sure what to do with them. There are many interesting things +one can do with classes (aka object oriented programming) but at their +hear they are a way of bundling data with methods that operate on that +data. The \texttt{self} variable is special in python and is how the +class refers to its own data and methods. Here is a toy example + +\begin{lstlisting} + +In [115]: class MyData: + .....: def __init__(self, x): + .....: self.x = x + .....: def sumsquare(self): + .....: return (self.x**2).sum() + .....: + .....: + +In [116]: nse = npy.random.rand(100) + +In [117]: mydata.sumsquare() +Out[117]: 29.6851135284 + +\end{lstlisting} + + \lstinputlisting[label=code:stats_descriptives_skel,caption={IGNORED}]{skel/stats_descriptives_skel.py} \begin{figure} Modified: trunk/py4science/workbook/stats_distributions.tex =================================================================== --- trunk/py4science/workbook/stats_distributions.tex 2007-10-26 20:21:23 UTC (rev 4031) +++ trunk/py4science/workbook/stats_distributions.tex 2007-10-27 04:00:59 UTC (rev 4032) @@ -1,9 +1,83 @@ \section{Statistical distributions} \label{sec:stats_distributions} +We explore a handful of the statistical distributions in +\texttt{scipy.stats} module and the connections between them. The +organization of the distribution functions in \texttt{scipy.stats} is +quite elegant, with each distribution providing random variates +(\texttt{rvs}), analytical moments (mean, variance, skew, kurtosis), +analytic density (\texttt{pdf}, \texttt{cdf}) and survival functions +(\texttt{sf}, \textt{isf}) (where available) and tools for fitting +empirical distributions to the analytic distributions (\textt{fit}). +in the exercise below, we will simulate a radioactive particle +emitter, and look at the empirical distribution of waiting times +compared with the expected analytical distributions. Our radioative +particle emitter has an equal likelihood of emitting a particle in any +equal time interval, and emits particles at a rate of 20~Hz. We will +discretely sample time at a high frequency, and record a 1 of a +particle is emitted and a 0 otherwise, and then look at the +distribution of waiting times between emissions. The probability of a +particle emission in one of our sample intervals (assumed to be very +small compared to the average interval between emissions) is +proportional to the rate and the sample interval $\Delta t$, ie +$p(\Delta t) = \alpha \Delta t$ where $\alpha$ is the emission rate in +particles per second. +\begin{lstlisting} +# a uniform distribution [0..1] +In [62]: uniform = scipy.stats.uniform() + +# our sample interval in seconds +In [63]: deltat = 0.001 + +# the emission rate, 20Hz +In [65]: alpha = 20 + +# 1000 random numbers +In [66]: rvs = uniform.rvs(1000) + +# a look at the 1st 20 random variates +In [67]: rvs[:20] +Out[67]: +array([ 0.71167172, 0.01723161, 0.25849255, 0.00599207, 0.58656146, + 0.12765225, 0.17898621, 0.77724693, 0.18042977, 0.91935639, + 0.97659579, 0.59045477, 0.94730366, 0.00764026, 0.12153159, + 0.82286929, 0.18990484, 0.34608396, 0.63931108, 0.57199175]) + +# we simulate an emission when the random number is less than +# p(Delta t) = alpha * deltat +In [84]: emit = rvs < (alpha * deltat) + + +# there were 3 emissions in the first 20 observations +In [85]: emit[:20] +Out[85]: +array([False, True, False, True, False, False, False, False, False, + False, False, False, False, True, False, False, False, False, + False, False], dtype=bool) +\end{lstlisting} + +The waiting times between the emissions should follow an exponential +distribution (see \texttt{scipy.stats.expon}) with a mean of +$1/\alpha$. In the exercise below, you will generate a long array of +emissions, compute the waiting times between emissions, between 2 +emissions, and between 10 emissions. These should approach an 1st +order gamma (aka exponential) distribution, 2nd order gamma, and 10th +order gamma (see \texttt{scipy.stats.gamma}). Use the probability +density functions for these distributions in \texttt{scipy.stats} to +compare your simulated distributions and moments with the analytic +versions provided by \texttt{scipy.stats}. With 10 waiting times, we +should be approaching a normal distribution since we are summing 10 +waiting times and under the central limit theorem the sum of +independent samples from a finite variance process approaches the +normal distribution (see \texttt{scipy.stats.norm}). In the final +part of the exercise below, you will be asked to approximate the 10th +order gamma distribution with a normal distribution. The results +should look something like those in +Figure~\ref{fig:stats_distributions}. + \lstinputlisting[label=code:stats_distributions_skel,caption={IGNORED}]{skel/stats_distributions_skel.py} \begin{figure} This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-26 20:21:36
|
Revision: 4031 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4031&view=rev Author: jdh2358 Date: 2007-10-26 13:21:23 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added stats workbooks skel Modified Paths: -------------- trunk/py4science/workbook/main.pdf trunk/py4science/workbook/main.tex Added Paths: ----------- trunk/py4science/workbook/intro_stats.tex trunk/py4science/workbook/stats_descriptives.tex trunk/py4science/workbook/stats_distributions.tex Added: trunk/py4science/workbook/intro_stats.tex =================================================================== --- trunk/py4science/workbook/intro_stats.tex (rev 0) +++ trunk/py4science/workbook/intro_stats.tex 2007-10-26 20:21:23 UTC (rev 4031) @@ -0,0 +1 @@ +TODO \ No newline at end of file Modified: trunk/py4science/workbook/main.pdf =================================================================== --- trunk/py4science/workbook/main.pdf 2007-10-26 20:20:12 UTC (rev 4030) +++ trunk/py4science/workbook/main.pdf 2007-10-26 20:21:23 UTC (rev 4031) @@ -102,9 +102,27 @@ (2. FFT Image Denoising) endobj 73 0 obj -<< /S /GoTo /D [74 0 R /Fit ] >> +<< /S /GoTo /D (chapter.7) >> endobj -76 0 obj << +76 0 obj +(Chapter 7. Statistics) +endobj +77 0 obj +<< /S /GoTo /D (section.7.1) >> +endobj +80 0 obj +(1. Descriptive statistics) +endobj +81 0 obj +<< /S /GoTo /D (section.7.2) >> +endobj +84 0 obj +(2. Statistical distributions) +endobj +85 0 obj +<< /S /GoTo /D [86 0 R /Fit ] >> +endobj +88 0 obj << /Length 292 /Filter /FlateDecode >> @@ -113,24 +131,24 @@ \xEAT\x89H\x94\xA1\xA4\xA1\x8DJm\xB5\xFCz\xEC\x86VEb\xA8,\xD9:/\xDF\x99\xCAY0\xE0\x95Ҍ\x8C\x81`\x89X\xBB\xAD[e\xEC\xA1\xC2_\x8E\xD5(\x9F\x8BP\xE9\xB0B\xCD\xE4\xB9\xC9MS]M\x8Cch\xC1X\xAFY\xF3δR\xA0\x9D\xAF\x99G\xB5Ɋf\xF9\xC2gâ\xDD\xF5\xED\xE2CH\xE3\x89?\xB5}\x85Q|'\x90\xF7B"\x9F+c\xDBz~\x9B\xB6\xE5\xE6s\xE3J\xBC6SF\xD11\xA9P+:8\xF7q\xB4\x9C}f\x91\xACS<\xD0e |
From: <jd...@us...> - 2007-10-26 20:20:36
|
Revision: 4030 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4030&view=rev Author: jdh2358 Date: 2007-10-26 13:20:12 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added stats distro figs Added Paths: ----------- trunk/py4science/workbook/fig/stats_distributions.eps trunk/py4science/workbook/fig/stats_distributions.png Added: trunk/py4science/workbook/fig/stats_distributions.eps =================================================================== --- trunk/py4science/workbook/fig/stats_distributions.eps (rev 0) +++ trunk/py4science/workbook/fig/stats_distributions.eps 2007-10-26 20:20:12 UTC (rev 4030) @@ -0,0 +1,6825 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Title: stats_distributions.eps +%%Creator: matplotlib version 0.90.1, http://matplotlib.sourceforge.net/ +%%CreationDate: Fri Oct 26 15:14:49 2007 +%%Orientation: portrait +%%BoundingBox: 18 180 594 612 +%%EndComments +%%BeginProlog +/mpldict 7 dict def +mpldict begin +/m { moveto } bind def +/l { lineto } bind def +/r { rlineto } bind def +/box { +m +1 index 0 r +0 exch r +neg 0 r +closepath +} bind def +/clipbox { +box +clip +newpath +} bind def +/ellipse { +newpath +matrix currentmatrix 7 1 roll +translate +scale +0 0 1 5 3 roll arc +setmatrix +closepath +} bind def +%!PS-Adobe-3.0 Resource-Font +%%Title: Bitstream Vera Sans +%%Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. +%%Creator: Converted from TrueType by PPR +25 dict begin +/_d{bind def}bind def +/_m{moveto}_d +/_l{lineto}_d +/_cl{closepath eofill}_d +/_c{curveto}_d +/_sc{7 -1 roll{setcachedevice}{pop pop pop pop pop pop}ifelse}_d +/_e{exec}_d +/FontName /BitstreamVeraSans-Roman def +/PaintType 0 def +/FontMatrix[.001 0 0 .001 0 0]def +/FontBBox[-182 -235 1287 928]def +/FontType 3 def +/Encoding StandardEncoding def +/FontInfo 10 dict dup begin +/FamilyName (Bitstream Vera Sans) def +/FullName (Bitstream Vera Sans) def +/Notice (Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.) def +/Weight (Roman) def +/Version (Release 1.10) def +/ItalicAngle 0.0 def +/isFixedPitch false def +/UnderlinePosition -213 def +/UnderlineThickness 143 def +end readonly def +/CharStrings 37 dict dup begin +/space{318 0 0 0 0 0 _sc +}_d +/period{318 0 107 0 210 124 _sc +107 124 _m +210 124 _l +210 0 _l +107 0 _l +107 124 _l +_cl}_d +/zero{636 0 66 -13 570 742 _sc +318 664 _m +267 664 229 639 203 589 _c +177 539 165 464 165 364 _c +165 264 177 189 203 139 _c +229 89 267 64 318 64 _c +369 64 407 89 433 139 _c +458 189 471 264 471 364 _c +471 464 458 539 433 589 _c +407 639 369 664 318 664 _c +318 742 _m +399 742 461 709 505 645 _c +548 580 570 486 570 364 _c +570 241 548 147 505 83 _c +461 19 399 -13 318 -13 _c +236 -13 173 19 130 83 _c +87 147 66 241 66 364 _c +66 486 87 580 130 645 _c +173 709 236 742 318 742 _c +_cl}_d +/one{636 0 110 0 544 729 _sc +124 83 _m +285 83 _l +285 639 _l +110 604 _l +110 694 _l +284 729 _l +383 729 _l +383 83 _l +544 83 _l +544 0 _l +124 0 _l +124 83 _l +_cl}_d +/two{{636 0 73 0 536 742 _sc +192 83 _m +536 83 _l +536 0 _l +73 0 _l +73 83 _l +110 121 161 173 226 239 _c +290 304 331 346 348 365 _c +380 400 402 430 414 455 _c +426 479 433 504 433 528 _c +433 566 419 598 392 622 _c +365 646 330 659 286 659 _c +255 659 222 653 188 643 _c +154 632 117 616 78 594 _c +78 694 _l +118 710 155 722 189 730 _c +223 738 255 742 284 742 _c +359 742 419 723 464 685 _c +509 647 532 597 532 534 _c +532 504 526 475 515 449 _c +504 422 484 390 454 354 _c +446 344 420 317 376 272 _c +332 227 271 164 192 83 _c +_cl}_e}_d +/three{{636 0 76 -13 556 742 _sc +406 393 _m +453 383 490 362 516 330 _c +542 298 556 258 556 212 _c +556 140 531 84 482 45 _c +432 6 362 -13 271 -13 _c +240 -13 208 -10 176 -4 _c +144 1 110 10 76 22 _c +76 117 _l +103 101 133 89 166 81 _c +198 73 232 69 268 69 _c +330 69 377 81 409 105 _c +441 129 458 165 458 212 _c +458 254 443 288 413 312 _c +383 336 341 349 287 349 _c +202 349 _l +202 430 _l +291 430 _l +339 430 376 439 402 459 _c +428 478 441 506 441 543 _c +441 580 427 609 401 629 _c +374 649 336 659 287 659 _c +260 659 231 656 200 650 _c +169 644 135 635 98 623 _c +98 711 _l +135 721 170 729 203 734 _c +235 739 266 742 296 742 _c +}_e{370 742 429 725 473 691 _c +517 657 539 611 539 553 _c +539 513 527 479 504 451 _c +481 423 448 403 406 393 _c +_cl}_e}_d +/four{636 0 49 0 580 729 _sc +378 643 _m +129 254 _l +378 254 _l +378 643 _l +352 729 _m +476 729 _l +476 254 _l +580 254 _l +580 172 _l +476 172 _l +476 0 _l +378 0 _l +378 172 _l +49 172 _l +49 267 _l +352 729 _l +_cl}_d +/five{{636 0 77 -13 549 729 _sc +108 729 _m +495 729 _l +495 646 _l +198 646 _l +198 467 _l +212 472 227 476 241 478 _c +255 480 270 482 284 482 _c +365 482 429 459 477 415 _c +525 370 549 310 549 234 _c +549 155 524 94 475 51 _c +426 8 357 -13 269 -13 _c +238 -13 207 -10 175 -6 _c +143 -1 111 6 77 17 _c +77 116 _l +106 100 136 88 168 80 _c +199 72 232 69 267 69 _c +323 69 368 83 401 113 _c +433 143 450 183 450 234 _c +450 284 433 324 401 354 _c +368 384 323 399 267 399 _c +241 399 214 396 188 390 _c +162 384 135 375 108 363 _c +108 729 _l +_cl}_e}_d +/six{{636 0 70 -13 573 742 _sc +330 404 _m +286 404 251 388 225 358 _c +199 328 186 286 186 234 _c +186 181 199 139 225 109 _c +251 79 286 64 330 64 _c +374 64 409 79 435 109 _c +461 139 474 181 474 234 _c +474 286 461 328 435 358 _c +409 388 374 404 330 404 _c +526 713 _m +526 623 _l +501 635 476 644 451 650 _c +425 656 400 659 376 659 _c +310 659 260 637 226 593 _c +192 549 172 482 168 394 _c +187 422 211 444 240 459 _c +269 474 301 482 336 482 _c +409 482 467 459 509 415 _c +551 371 573 310 573 234 _c +573 159 550 99 506 54 _c +462 9 403 -13 330 -13 _c +246 -13 181 19 137 83 _c +92 147 70 241 70 364 _c +70 479 97 571 152 639 _c +206 707 280 742 372 742 _c +}_e{396 742 421 739 447 735 _c +472 730 498 723 526 713 _c +_cl}_e}_d +/seven{636 0 82 0 551 729 _sc +82 729 _m +551 729 _l +551 687 _l +286 0 _l +183 0 _l +432 646 _l +82 646 _l +82 729 _l +_cl}_d +/eight{{636 0 68 -13 568 742 _sc +318 346 _m +271 346 234 333 207 308 _c +180 283 167 249 167 205 _c +167 161 180 126 207 101 _c +234 76 271 64 318 64 _c +364 64 401 76 428 102 _c +455 127 469 161 469 205 _c +469 249 455 283 429 308 _c +402 333 365 346 318 346 _c +219 388 _m +177 398 144 418 120 447 _c +96 476 85 511 85 553 _c +85 611 105 657 147 691 _c +188 725 245 742 318 742 _c +390 742 447 725 489 691 _c +530 657 551 611 551 553 _c +551 511 539 476 515 447 _c +491 418 459 398 417 388 _c +464 377 501 355 528 323 _c +554 291 568 251 568 205 _c +568 134 546 80 503 43 _c +459 5 398 -13 318 -13 _c +237 -13 175 5 132 43 _c +89 80 68 134 68 205 _c +68 251 81 291 108 323 _c +134 355 171 377 219 388 _c +}_e{183 544 _m +183 506 194 476 218 455 _c +242 434 275 424 318 424 _c +360 424 393 434 417 455 _c +441 476 453 506 453 544 _c +453 582 441 611 417 632 _c +393 653 360 664 318 664 _c +275 664 242 653 218 632 _c +194 611 183 582 183 544 _c +_cl}_e}_d +/nine{{636 0 63 -13 566 742 _sc +110 15 _m +110 105 _l +134 93 159 84 185 78 _c +210 72 235 69 260 69 _c +324 69 374 90 408 134 _c +442 178 462 244 468 334 _c +448 306 424 284 396 269 _c +367 254 335 247 300 247 _c +226 247 168 269 126 313 _c +84 357 63 417 63 494 _c +63 568 85 628 129 674 _c +173 719 232 742 306 742 _c +390 742 455 709 499 645 _c +543 580 566 486 566 364 _c +566 248 538 157 484 89 _c +429 21 356 -13 264 -13 _c +239 -13 214 -10 189 -6 _c +163 -2 137 5 110 15 _c +306 324 _m +350 324 385 339 411 369 _c +437 399 450 441 450 494 _c +450 546 437 588 411 618 _c +385 648 350 664 306 664 _c +262 664 227 648 201 618 _c +175 588 162 546 162 494 _c +}_e{162 441 175 399 201 369 _c +227 339 262 324 306 324 _c +_cl}_e}_d +/D{770 0 98 0 711 729 _sc +197 648 _m +197 81 _l +316 81 _l +416 81 490 103 537 149 _c +583 195 607 267 607 365 _c +607 463 583 534 537 580 _c +490 625 416 648 316 648 _c +197 648 _l +98 729 _m +301 729 _l +442 729 546 699 612 641 _c +678 582 711 490 711 365 _c +711 239 677 147 611 88 _c +545 29 441 0 301 0 _c +98 0 _l +98 729 _l +_cl}_d +/F{575 0 98 0 517 729 _sc +98 729 _m +517 729 _l +517 646 _l +197 646 _l +197 431 _l +486 431 _l +486 348 _l +197 348 _l +197 0 _l +98 0 _l +98 729 _l +_cl}_d +/H{752 0 98 0 654 729 _sc +98 729 _m +197 729 _l +197 430 _l +555 430 _l +555 729 _l +654 729 _l +654 0 _l +555 0 _l +555 347 _l +197 347 _l +197 0 _l +98 0 _l +98 729 _l +_cl}_d +/P{603 0 98 0 569 729 _sc +197 648 _m +197 374 _l +321 374 _l +367 374 402 385 427 409 _c +452 433 465 467 465 511 _c +465 555 452 588 427 612 _c +402 636 367 648 321 648 _c +197 648 _l +98 729 _m +321 729 _l +402 729 464 710 506 673 _c +548 636 569 582 569 511 _c +569 439 548 384 506 348 _c +464 311 402 293 321 293 _c +197 293 _l +197 0 _l +98 0 _l +98 729 _l +_cl}_d +/a{{613 0 60 -13 522 560 _sc +343 275 _m +270 275 220 266 192 250 _c +164 233 150 205 150 165 _c +150 133 160 107 181 89 _c +202 70 231 61 267 61 _c +317 61 357 78 387 114 _c +417 149 432 196 432 255 _c +432 275 _l +343 275 _l +522 312 _m +522 0 _l +432 0 _l +432 83 _l +411 49 385 25 355 10 _c +325 -5 287 -13 243 -13 _c +187 -13 142 2 109 33 _c +76 64 60 106 60 159 _c +60 220 80 266 122 298 _c +163 329 224 345 306 345 _c +432 345 _l +432 354 _l +432 395 418 427 391 450 _c +364 472 326 484 277 484 _c +245 484 215 480 185 472 _c +155 464 127 453 100 439 _c +100 522 _l +}_e{132 534 164 544 195 550 _c +226 556 256 560 286 560 _c +365 560 424 539 463 498 _c +502 457 522 395 522 312 _c +_cl}_e}_d +/c{{550 0 55 -13 488 560 _sc +488 526 _m +488 442 _l +462 456 437 466 411 473 _c +385 480 360 484 334 484 _c +276 484 230 465 198 428 _c +166 391 150 339 150 273 _c +150 206 166 154 198 117 _c +230 80 276 62 334 62 _c +360 62 385 65 411 72 _c +437 79 462 90 488 104 _c +488 21 _l +462 9 436 0 410 -5 _c +383 -10 354 -13 324 -13 _c +242 -13 176 12 128 64 _c +79 115 55 185 55 273 _c +55 362 79 432 128 483 _c +177 534 244 560 330 560 _c +358 560 385 557 411 551 _c +437 545 463 537 488 526 _c +_cl}_e}_d +/d{{635 0 55 -13 544 760 _sc +454 464 _m +454 760 _l +544 760 _l +544 0 _l +454 0 _l +454 82 _l +435 49 411 25 382 10 _c +353 -5 319 -13 279 -13 _c +213 -13 159 13 117 65 _c +75 117 55 187 55 273 _c +55 359 75 428 117 481 _c +159 533 213 560 279 560 _c +319 560 353 552 382 536 _c +411 520 435 496 454 464 _c +148 273 _m +148 207 161 155 188 117 _c +215 79 253 61 301 61 _c +348 61 385 79 413 117 _c +440 155 454 207 454 273 _c +454 339 440 390 413 428 _c +385 466 348 485 301 485 _c +253 485 215 466 188 428 _c +161 390 148 339 148 273 _c +_cl}_e}_d +/e{{615 0 55 -13 562 560 _sc +562 296 _m +562 252 _l +149 252 _l +153 190 171 142 205 110 _c +238 78 284 62 344 62 _c +378 62 412 66 444 74 _c +476 82 509 95 541 113 _c +541 28 _l +509 14 476 3 442 -3 _c +408 -9 373 -13 339 -13 _c +251 -13 182 12 131 62 _c +80 112 55 181 55 268 _c +55 357 79 428 127 481 _c +175 533 241 560 323 560 _c +397 560 455 536 498 489 _c +540 441 562 377 562 296 _c +472 322 _m +471 371 457 410 431 440 _c +404 469 368 484 324 484 _c +274 484 234 469 204 441 _c +174 413 156 373 152 322 _c +472 322 _l +_cl}_e}_d +/f{352 0 23 0 371 760 _sc +371 760 _m +371 685 _l +285 685 _l +253 685 230 678 218 665 _c +205 652 199 629 199 595 _c +199 547 _l +347 547 _l +347 477 _l +199 477 _l +199 0 _l +109 0 _l +109 477 _l +23 477 _l +23 547 _l +109 547 _l +109 585 _l +109 645 123 690 151 718 _c +179 746 224 760 286 760 _c +371 760 _l +_cl}_d +/g{{635 0 55 -207 544 560 _sc +454 280 _m +454 344 440 395 414 431 _c +387 467 349 485 301 485 _c +253 485 215 467 188 431 _c +161 395 148 344 148 280 _c +148 215 161 165 188 129 _c +215 93 253 75 301 75 _c +349 75 387 93 414 129 _c +440 165 454 215 454 280 _c +544 68 _m +544 -24 523 -93 482 -139 _c +440 -184 377 -207 292 -207 _c +260 -207 231 -204 203 -200 _c +175 -195 147 -188 121 -178 _c +121 -91 _l +147 -105 173 -115 199 -122 _c +225 -129 251 -133 278 -133 _c +336 -133 380 -117 410 -87 _c +439 -56 454 -10 454 52 _c +454 96 _l +435 64 411 40 382 24 _c +353 8 319 0 279 0 _c +211 0 157 25 116 76 _c +75 127 55 195 55 280 _c +55 364 75 432 116 483 _c +157 534 211 560 279 560 _c +}_e{319 560 353 552 382 536 _c +411 520 435 496 454 464 _c +454 547 _l +544 547 _l +544 68 _l +_cl}_e}_d +/i{278 0 94 0 184 760 _sc +94 547 _m +184 547 _l +184 0 _l +94 0 _l +94 547 _l +94 760 _m +184 760 _l +184 646 _l +94 646 _l +94 760 _l +_cl}_d +/l{278 0 94 0 184 760 _sc +94 760 _m +184 760 _l +184 0 _l +94 0 _l +94 760 _l +_cl}_d +/m{{974 0 91 0 889 560 _sc +520 442 _m +542 482 569 511 600 531 _c +631 550 668 560 711 560 _c +767 560 811 540 842 500 _c +873 460 889 403 889 330 _c +889 0 _l +799 0 _l +799 327 _l +799 379 789 418 771 444 _c +752 469 724 482 686 482 _c +639 482 602 466 575 435 _c +548 404 535 362 535 309 _c +535 0 _l +445 0 _l +445 327 _l +445 379 435 418 417 444 _c +398 469 369 482 331 482 _c +285 482 248 466 221 435 _c +194 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +201 495 226 520 255 536 _c +283 552 317 560 357 560 _c +397 560 430 550 458 530 _c +486 510 506 480 520 442 _c +}_e{_cl}_e}_d +/n{634 0 91 0 549 560 _sc +549 330 _m +549 0 _l +459 0 _l +459 327 _l +459 379 448 417 428 443 _c +408 469 378 482 338 482 _c +289 482 251 466 223 435 _c +195 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +202 494 227 519 257 535 _c +286 551 320 560 358 560 _c +420 560 468 540 500 501 _c +532 462 549 405 549 330 _c +_cl}_d +/o{612 0 55 -13 557 560 _sc +306 484 _m +258 484 220 465 192 427 _c +164 389 150 338 150 273 _c +150 207 163 156 191 118 _c +219 80 257 62 306 62 _c +354 62 392 80 420 118 _c +448 156 462 207 462 273 _c +462 337 448 389 420 427 _c +392 465 354 484 306 484 _c +306 560 _m +384 560 445 534 490 484 _c +534 433 557 363 557 273 _c +557 183 534 113 490 63 _c +445 12 384 -13 306 -13 _c +227 -13 165 12 121 63 _c +77 113 55 183 55 273 _c +55 363 77 433 121 484 _c +165 534 227 560 306 560 _c +_cl}_d +/p{{635 0 91 -207 580 560 _sc +181 82 _m +181 -207 _l +91 -207 _l +91 547 _l +181 547 _l +181 464 _l +199 496 223 520 252 536 _c +281 552 316 560 356 560 _c +422 560 476 533 518 481 _c +559 428 580 359 580 273 _c +580 187 559 117 518 65 _c +476 13 422 -13 356 -13 _c +316 -13 281 -5 252 10 _c +223 25 199 49 181 82 _c +487 273 _m +487 339 473 390 446 428 _c +418 466 381 485 334 485 _c +286 485 249 466 222 428 _c +194 390 181 339 181 273 _c +181 207 194 155 222 117 _c +249 79 286 61 334 61 _c +381 61 418 79 446 117 _c +473 155 487 207 487 273 _c +_cl}_e}_d +/r{411 0 91 0 411 560 _sc +411 463 _m +401 469 390 473 378 476 _c +366 478 353 480 339 480 _c +288 480 249 463 222 430 _c +194 397 181 350 181 288 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +199 495 224 520 254 536 _c +284 552 321 560 365 560 _c +371 560 378 559 386 559 _c +393 558 401 557 411 555 _c +411 463 _l +_cl}_d +/s{{521 0 54 -13 472 560 _sc +443 531 _m +443 446 _l +417 458 391 468 364 475 _c +336 481 308 485 279 485 _c +234 485 200 478 178 464 _c +156 450 145 430 145 403 _c +145 382 153 366 169 354 _c +185 342 217 330 265 320 _c +296 313 _l +360 299 405 279 432 255 _c +458 230 472 195 472 151 _c +472 100 452 60 412 31 _c +372 1 316 -13 246 -13 _c +216 -13 186 -10 154 -5 _c +122 0 89 8 54 20 _c +54 113 _l +87 95 120 82 152 74 _c +184 65 216 61 248 61 _c +290 61 323 68 346 82 _c +368 96 380 117 380 144 _c +380 168 371 187 355 200 _c +339 213 303 226 247 238 _c +216 245 _l +160 257 119 275 95 299 _c +70 323 58 356 58 399 _c +58 450 76 490 112 518 _c +148 546 200 560 268 560 _c +}_e{301 560 332 557 362 552 _c +391 547 418 540 443 531 _c +_cl}_e}_d +/t{392 0 27 0 368 702 _sc +183 702 _m +183 547 _l +368 547 _l +368 477 _l +183 477 _l +183 180 _l +183 135 189 106 201 94 _c +213 81 238 75 276 75 _c +368 75 _l +368 0 _l +276 0 _l +206 0 158 13 132 39 _c +106 65 93 112 93 180 _c +93 477 _l +27 477 _l +27 547 _l +93 547 _l +93 702 _l +183 702 _l +_cl}_d +/u{634 0 85 -13 543 547 _sc +85 216 _m +85 547 _l +175 547 _l +175 219 _l +175 167 185 129 205 103 _c +225 77 255 64 296 64 _c +344 64 383 79 411 110 _c +439 141 453 183 453 237 _c +453 547 _l +543 547 _l +543 0 _l +453 0 _l +453 84 _l +431 50 405 26 377 10 _c +348 -5 315 -13 277 -13 _c +214 -13 166 6 134 45 _c +101 83 85 140 85 216 _c +_cl}_d +/v{592 0 30 0 562 547 _sc +30 547 _m +125 547 _l +296 88 _l +467 547 _l +562 547 _l +357 0 _l +235 0 _l +30 547 _l +_cl}_d +/w{818 0 42 0 776 547 _sc +42 547 _m +132 547 _l +244 120 _l +356 547 _l +462 547 _l +574 120 _l +686 547 _l +776 547 _l +633 0 _l +527 0 _l +409 448 _l +291 0 _l +185 0 _l +42 547 _l +_cl}_d +/x{592 0 29 0 559 547 _sc +549 547 _m +351 281 _l +559 0 _l +453 0 _l +294 215 _l +135 0 _l +29 0 _l +241 286 _l +47 547 _l +153 547 _l +298 352 _l +443 547 _l +549 547 _l +_cl}_d +/y{592 0 30 -207 562 547 _sc +322 -50 _m +296 -114 271 -157 247 -177 _c +223 -197 191 -207 151 -207 _c +79 -207 _l +79 -132 _l +132 -132 _l +156 -132 175 -126 189 -114 _c +203 -102 218 -75 235 -31 _c +251 9 _l +30 547 _l +125 547 _l +296 119 _l +467 547 _l +562 547 _l +322 -50 _l +_cl}_d +/z{525 0 43 0 482 547 _sc +55 547 _m +482 547 _l +482 465 _l +144 72 _l +482 72 _l +482 0 _l +43 0 _l +43 82 _l +381 475 _l +55 475 _l +55 547 _l +_cl}_d +end readonly def + +/BuildGlyph + {exch begin + CharStrings exch + 2 copy known not{pop /.notdef}if + true 3 1 roll get exec + end}_d + +/BuildChar { + 1 index /Encoding get exch get + 1 index /BuildGlyph get exec +}_d + +FontName currentdict end definefont pop +%%EOF +end +%%EndProlog +mpldict begin +18 180 translate +576 432 0 0 clipbox +gsave +1.000 setgray +1.000 setlinewidth +0 setlinejoin +2 setlinecap +[] 0 setdash +0 0 m +0 432 l +576 432 l +576 0 l +closepath +gsave +fill +grestore +stroke +grestore +gsave +0.000 setgray +72 287.153 m +72 388.8 l +518.4 388.8 l +518.4 287.153 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +72.893 287.153 m +72.893 381.39 l +76.669 381.39 l +76.669 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +77.089 287.153 m +77.089 366.511 l +80.866 366.511 l +80.866 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +81.285 287.153 m +81.285 359.897 l +85.062 359.897 l +85.062 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +85.481 287.153 m +85.481 335.925 l +89.258 335.925 l +89.258 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +89.677 287.153 m +89.677 340.885 l +93.454 340.885 l +93.454 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +93.874 287.153 m +93.874 340.885 l +97.65 340.885 l +97.65 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +98.07 287.153 m +98.07 324.765 l +101.846 324.765 l +101.846 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +102.266 287.153 m +102.266 335.098 l +106.042 335.098 l +106.042 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +106.462 287.153 m +106.462 325.592 l +110.239 325.592 l +110.239 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +110.658 287.153 m +110.658 308.232 l +114.435 308.232 l +114.435 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +114.854 287.153 m +114.854 315.672 l +118.631 315.672 l +118.631 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +119.051 287.153 m +119.051 317.325 l +122.827 317.325 l +122.827 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +123.247 287.153 m +123.247 313.606 l +127.023 313.606 l +127.023 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +127.443 287.153 m +127.443 308.232 l +131.219 308.232 l +131.219 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +131.639 287.153 m +131.639 311.126 l +135.416 311.126 l +135.416 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +135.835 287.153 m +135.835 304.926 l +139.612 304.926 l +139.612 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +140.031 287.153 m +140.031 300.793 l +143.808 300.793 l +143.808 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +144.228 287.153 m +144.228 300.379 l +148.004 300.379 l +148.004 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +148.424 287.153 m +148.424 299.553 l +152.2 299.553 l +152.2 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +152.62 287.153 m +152.62 301.206 l +156.396 301.206 l +156.396 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +156.816 287.153 m +156.816 296.246 l +160.593 296.246 l +160.593 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +161.012 287.153 m +161.012 297.486 l +164.789 297.486 l +164.789 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +165.208 287.153 m +165.208 296.246 l +168.985 296.246 l +168.985 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +169.404 287.153 m +169.404 293.766 l +173.181 293.766 l +173.181 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +173.601 287.153 m +173.601 296.659 l +177.377 296.659 l +177.377 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +177.797 287.153 m +177.797 295.006 l +181.573 295.006 l +181.573 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +181.993 287.153 m +181.993 292.526 l +185.77 292.526 l +185.77 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +186.189 287.153 m +186.189 292.526 l +189.966 292.526 l +189.966 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +190.385 287.153 m +190.385 292.939 l +194.162 292.939 l +194.162 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +194.581 287.153 m +194.581 290.873 l +198.358 290.873 l +198.358 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +198.778 287.153 m +198.778 292.113 l +202.554 292.113 l +202.554 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +202.974 287.153 m +202.974 291.699 l +206.75 291.699 l +206.75 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +207.17 287.153 m +207.17 290.873 l +210.946 290.873 l +210.946 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +211.366 287.153 m +211.366 288.806 l +215.143 288.806 l +215.143 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +215.562 287.153 m +215.562 289.22 l +219.339 289.22 l +219.339 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +219.758 287.153 m +219.758 288.806 l +223.535 288.806 l +223.535 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +223.955 287.153 m +223.955 288.393 l +227.731 288.393 l +227.731 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +228.151 287.153 m +228.151 288.806 l +231.927 288.806 l +231.927 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +232.347 287.153 m +232.347 289.22 l +236.123 289.22 l +236.123 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +236.543 287.153 m +236.543 288.393 l +240.32 288.393 l +240.32 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +240.739 287.153 m +240.739 289.22 l +244.516 289.22 l +244.516 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +244.935 287.153 m +244.935 288.806 l +248.712 288.806 l +248.712 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +249.132 287.153 m +249.132 289.22 l +252.908 289.22 l +252.908 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +253.328 287.153 m +253.328 287.566 l +257.104 287.566 l +257.104 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +257.524 287.153 m +257.524 287.153 l +261.3 287.153 l +261.3 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +261.72 287.153 m +261.72 288.393 l +265.497 288.393 l +265.497 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +265.916 287.153 m +265.916 287.153 l +269.693 287.153 l +269.693 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +270.112 287.153 m +270.112 287.153 l +273.889 287.153 l +273.889 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +274.308 287.153 m +274.308 287.566 l +278.085 287.566 l +278.085 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +278.505 287.153 m +278.505 287.98 l +282.281 287.98 l +282.281 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +282.701 287.153 m +282.701 287.566 l +286.477 287.566 l +286.477 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +286.897 287.153 m +286.897 287.98 l +290.674 287.98 l +290.674 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +291.093 287.153 m +291.093 288.393 l +294.87 288.393 l +294.87 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +295.289 287.153 m +295.289 287.153 l +299.066 287.153 l +299.066 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +299.485 287.153 m +299.485 288.393 l +303.262 288.393 l +303.262 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +303.682 287.153 m +303.682 287.566 l +307.458 287.566 l +307.458 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +307.878 287.153 m +307.878 287.153 l +311.654 287.153 l +311.654 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +312.074 287.153 m +312.074 287.98 l +315.85 287.98 l +315.85 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +316.27 287.153 m +316.27 288.393 l +320.047 288.393 l +320.047 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +320.466 287.153 m +320.466 287.566 l +324.243 287.566 l +324.243 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +324.662 287.153 m +324.662 287.566 l +328.439 287.566 l +328.439 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +328.859 287.153 m +328.859 287.566 l +332.635 287.566 l +332.635 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +333.055 287.153 m +333.055 287.153 l +336.831 287.153 l +336.831 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +337.251 287.153 m +337.251 287.153 l +341.027 287.153 l +341.027 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +341.447 287.153 m +341.447 287.153 l +345.224 287.153 l +345.224 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +345.643 287.153 m +345.643 287.153 l +349.42 287.153 l +349.42 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +349.839 287.153 m +349.839 287.153 l +353.616 287.153 l +353.616 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +354.036 287.153 m +354.036 287.566 l +357.812 287.566 l +357.812 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +358.232 287.153 m +358.232 287.153 l +362.008 287.153 l +362.008 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +362.428 287.153 m +362.428 287.153 l +366.204 287.153 l +366.204 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +366.624 287.153 m +366.624 287.153 l +370.401 287.153 l +370.401 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +370.82 287.153 m +370.82 287.566 l +374.597 287.566 l +374.597 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +375.016 287.153 m +375.016 287.153 l +378.793 287.153 l +378.793 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +379.212 287.153 m +379.212 287.153 l +382.989 287.153 l +382.989 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +383.409 287.153 m +383.409 287.98 l +387.185 287.98 l +387.185 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +387.605 287.153 m +387.605 287.153 l +391.381 287.153 l +391.381 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +391.801 287.153 m +391.801 287.566 l +395.578 287.566 l +395.578 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +395.997 287.153 m +395.997 287.153 l +399.774 287.153 l +399.774 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +400.193 287.153 m +400.193 287.153 l +403.97 287.153 l +403.97 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +404.389 287.153 m +404.389 287.153 l +408.166 287.153 l +408.166 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +408.586 287.153 m +408.586 287.153 l +412.362 287.153 l +412.362 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +412.782 287.153 m +412.782 287.153 l +416.558 287.153 l +416.558 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +416.978 287.153 m +416.978 287.153 l +420.754 287.153 l +420.754 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +421.174 287.153 m +421.174 287.153 l +424.951 287.153 l +424.951 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +425.37 287.153 m +425.37 287.153 l +429.147 287.153 l +429.147 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +429.566 287.153 m +429.566 287.153 l +433.343 287.153 l +433.343 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +433.763 287.153 m +433.763 287.153 l +437.539 287.153 l +437.539 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +437.959 287.153 m +437.959 287.153 l +441.735 287.153 l +441.735 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +442.155 287.153 m +442.155 287.153 l +445.931 287.153 l +445.931 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +446.351 287.153 m +446.351 287.153 l +450.128 287.153 l +450.128 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +450.547 287.153 m +450.547 287.153 l +454.324 287.153 l +454.324 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +454.743 287.153 m +454.743 287.153 l +458.52 287.153 l +458.52 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +458.94 287.153 m +458.94 287.153 l +462.716 287.153 l +462.716 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +463.136 287.153 m +463.136 287.153 l +466.912 287.153 l +466.912 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +467.332 287.153 m +467.332 287.153 l +471.108 287.153 l +471.108 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +471.528 287.153 m +471.528 287.153 l +475.305 287.153 l +475.305 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +475.724 287.153 m +475.724 287.153 l +479.501 287.153 l +479.501 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +479.92 287.153 m +479.92 287.153 l +483.697 287.153 l +483.697 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +484.116 287.153 m +484.116 287.153 l +487.893 287.153 l +487.893 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 287.2 clipbox +488.313 287.153 m +488.313 287.566 l +492.089 287.566 l +492.089 287.153 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +1.000 0.000 0.000 setrgbcolor +2.000 setlinewidth +gsave +446.4 101.647 72 287.153 clipbox +72.8928 366.86 m +77.089 359.709 l +81.2851 353.2 l +85.4813 347.274 l +89.6774 341.88 l +93.8736 336.97 l +98.0698 332.501 l +102.266 328.432 l +106.462 324.729 l +110.658 321.358 l +114.854 318.289 l +119.051 315.495 l +123.247 312.953 l +127.443 310.638 l +131.639 308.531 l +135.835 306.613 l +140.031 304.867 l +144.228 303.278 l +148.424 301.831 l +152.62 300.514 l +156.816 299.316 l +161.012 298.224 l +165.208 297.231 l +169.404 296.327 l +173.601 295.504 l +177.797 294.755 l +181.993 294.073 l +186.189 293.452 l +190.385 292.887 l +194.581 292.372 l +198.778 291.904 l +202.974 291.478 l +207.17 291.09 l +211.366 290.737 l +215.562 290.415 l +219.758 290.122 l +223.955 289.856 l +228.151 289.613 l +232.347 289.393 l +236.543 289.192 l +240.739 289.009 l +244.935 288.842 l +249.132 288.691 l +253.328 288.553 l +257.524 288.427 l +261.72 288.313 l +265.916 288.209 l +270.112 288.114 l +274.308 288.028 l +278.505 287.949 l +282.701 287.878 l +286.897 287.813 l +291.093 287.754 l +295.289 287.7 l +299.485 287.651 l +303.682 287.606 l +307.878 287.565 l +312.074 287.528 l +316.27 287.495 l +320.466 287.464 l +324.662 287.436 l +328.859 287.411 l +333.055 287.388 l +337.251 287.367 l +341.447 287.347 l +345.643 287.33 l +349.839 287.314 l +354.036 287.3 l +358.232 287.286 l +362.428 287.274 l +366.624 287.264 l +370.82 287.254 l +375.016 287.245 l +379.212 287.236 l +383.409 287.229 l +387.605 287.222 l +391.801 287.216 l +395.997 287.21 l +400.193 287.205 l +404.389 287.2 l +408.586 287.196 l +412.782 287.192 l +416.978 287.189 l +421.174 287.186 l +425.37 287.183 l +429.566 287.18 l +433.763 287.178 l +437.959 287.175 l +442.155 287.173 l +446.351 287.171 l +450.547 287.17 l +454.743 287.168 l +458.94 287.167 l +463.136 287.166 l +467.332 287.165 l +471.528 287.163 l +475.724 287.163 l +479.92 287.162 l +484.116 287.161 l +488.313 287.16 l +stroke +grestore +0.000 0.502 0.000 setrgbcolor +0 setlinecap +[6 6] 0 setdash +gsave +446.4 101.647 72 287.153 clipbox +72.8928 366.86 m +77.089 359.709 l +81.2851 353.2 l +85.4813 347.274 l +89.6774 341.88 l +93.8736 336.97 l +98.0698 332.501 l +102.266 328.432 l +106.462 324.729 l +110.658 321.358 l +114.854 318.289 l +119.051 315.495 l +123.247 312.953 l +127.443 310.638 l +131.639 308.531 l +135.835 306.613 l +140.031 304.867 l +144.228 303.278 l +148.424 301.831 l +152.62 300.514 l +156.816 299.316 l +161.012 298.224 l +165.208 297.231 l +169.404 296.327 l +173.601 295.504 l +177.797 294.755 l +181.993 294.073 l +186.189 293.452 l +190.385 292.887 l +194.581 292.372 l +198.778 291.904 l +202.974 291.478 l +207.17 291.09 l +211.366 290.737 l +215.562 290.415 l +219.758 290.122 l +223.955 289.856 l +228.151 289.613 l +232.347 289.393 l +236.543 289.192 l +240.739 289.009 l +244.935 288.842 l +249.132 288.691 l +253.328 288.553 l +257.524 288.427 l +261.72 288.313 l +265.916 288.209 l +270.112 288.114 l +274.308 288.028 l +278.505 287.949 l +282.701 287.878 l +286.897 287.813 l +291.093 287.754 l +295.289 287.7 l +299.485 287.651 l +303.682 287.606 l +307.878 287.565 l +312.074 287.528 l +316.27 287.495 l +320.466 287.464 l +324.662 287.436 l +328.859 287.411 l +333.055 287.388 l +337.251 287.367 l +341.447 287.347 l +345.643 287.33 l +349.839 287.314 l +354.036 287.3 l +358.232 287.286 l +362.428 287.274 l +366.624 287.264 l +370.82 287.254 l +375.016 287.245 l +379.212 287.236 l +383.409 287.229 l +387.605 287.222 l +391.801 287.216 l +395.997 287.21 l +400.193 287.205 l +404.389 287.2 l +408.586 287.196 l +412.782 287.192 l +416.978 287.189 l +421.174 287.186 l +425.37 287.183 l +429.566 287.18 l +433.763 287.178 l +437.959 287.175 l +442.155 287.173 l +446.351 287.171 l +450.547 287.17 l +454.743 287.168 l +458.94 287.167 l +463.136 287.166 l +467.332 287.165 l +471.528 287.163 l +475.724 287.163 l +479.92 287.162 l +484.116 287.161 l +488.313 287.16 l +stroke +grestore +0.000 setgray +/BitstreamVeraSans-Roman findfont +12.000 scalefont +setfont +63.25 274.075 m +0 0.172 rmoveto +(0.0) show +0.500 setlinewidth +[] 0 setdash +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +161.28 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +161.28 388.8 o +152.686 274.075 m +0 0.172 rmoveto +(0.1) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +250.56 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +250.56 388.8 o +242.013 274.075 m +0 0.172 rmoveto +(0.2) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +339.84 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +339.84 388.8 o +331.176 274.075 m +0 0.172 rmoveto +(0.3) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +429.12 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +429.12 388.8 o +420.308 274.075 m +0 0.172 rmoveto +(0.4) show +509.775 274.075 m +0 0.172 rmoveto +(0.5) show +61.953 282.614 m +0 0.172 rmoveto +(0) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 307.482 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 307.482 o +62.328 303.021 m +0 0.172 rmoveto +(5) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 327.812 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 327.812 o +54.828 323.273 m +0 0.172 rmoveto +(10) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 348.141 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 348.141 o +55.078 343.68 m +0 0.172 rmoveto +(15) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 368.471 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 368.471 o +54.391 363.932 m +0 0.172 rmoveto +(20) show +54.641 384.261 m +0 0.172 rmoveto +(25) show +49.391 327.226 m +gsave +90 rotate +(PDF) show +grestore +1.000 setlinewidth +2 setlinecap +72 287.153 m +518.4 287.153 l +518.4 388.8 l +72 388.8 l +72 287.153 l +stroke +94.32 378.635 m +0 0.172 rmoveto +(one interval) show +/BitstreamVeraSans-Roman findfont +14.000 scalefont +setfont +125.77 390.833 m +0 2.906 rmoveto +(waiting time densities of a 20Hz Poisson emitter) show +gsave +323.924 335.388 m +323.924 386.767 l +509.472 386.767 l +509.472 335.388 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +gsave +342.387 373.844 m +342.387 380.283 l +364.707 380.283 l +364.707 373.844 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +1.000 0.000 0.000 setrgbcolor +2.000 setlinewidth +342.387 362.564 m +364.707 362.564 l +stroke +0.000 0.502 0.000 setrgbcolor +0 setlinecap +[6 6] 0 setdash +342.387 346.443 m +364.707 346.443 l +stroke +0.000 setgray +373.635 371.642 m +0 0.203 rmoveto +(simulated) show +373.635 355.791 m +0 2.906 rmoveto +(analytic) show +373.635 339.669 m +0 2.906 rmoveto +(scipy.stats.expon) show +gsave +1.000 setlinewidth +2 setlinecap +[] 0 setdash +72 165.176 m +72 266.824 l +518.4 266.824 l +518.4 165.176 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +73.116 165.176 m +73.116 197.19 l +76.842 197.19 l +76.842 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +77.256 165.176 m +77.256 207.377 l +80.983 207.377 l +80.983 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +81.397 165.176 m +81.397 242.301 l +85.123 242.301 l +85.123 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +85.537 165.176 m +85.537 249.577 l +89.263 249.577 l +89.263 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +89.677 165.176 m +89.677 261.218 l +93.404 261.218 l +93.404 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +93.818 165.176 m +93.818 243.756 l +97.544 243.756 l +97.544 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +97.958 165.176 m +97.958 232.115 l +101.684 232.115 l +101.684 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +102.099 165.176 m +102.099 242.301 l +105.825 242.301 l +105.825 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +106.239 165.176 m +106.239 249.577 l +109.965 249.577 l +109.965 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +110.379 165.176 m +110.379 245.211 l +114.106 245.211 l +114.106 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +114.52 165.176 m +114.52 226.294 l +118.246 226.294 l +118.246 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +118.66 165.176 m +118.66 245.211 l +122.386 245.211 l +122.386 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +122.8 165.176 m +122.8 242.301 l +126.527 242.301 l +126.527 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +126.941 165.176 m +126.941 221.928 l +130.667 221.928 l +130.667 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +131.081 165.176 m +131.081 217.563 l +134.807 217.563 l +134.807 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +135.221 165.176 m +135.221 205.922 l +138.948 205.922 l +138.948 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +139.362 165.176 m +139.362 217.563 l +143.088 217.563 l +143.088 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +143.502 165.176 m +143.502 201.556 l +147.228 201.556 l +147.228 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +147.642 165.176 m +147.642 204.466 l +151.369 204.466 l +151.369 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +151.783 165.176 m +151.783 203.011 l +155.509 203.011 l +155.509 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +155.923 165.176 m +155.923 198.646 l +159.65 198.646 l +159.65 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +160.064 165.176 m +160.064 197.19 l +163.79 197.19 l +163.79 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +164.204 165.176 m +164.204 188.459 l +167.93 188.459 l +167.93 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +168.344 165.176 m +168.344 184.094 l +172.071 184.094 l +172.071 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +172.485 165.176 m +172.485 187.004 l +176.211 187.004 l +176.211 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +176.625 165.176 m +176.625 181.183 l +180.351 181.183 l +180.351 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +180.765 165.176 m +180.765 184.094 l +184.492 184.094 l +184.492 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +184.906 165.176 m +184.906 176.818 l +188.632 176.818 l +188.632 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +189.046 165.176 m +189.046 175.363 l +192.772 175.363 l +192.772 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +193.186 165.176 m +193.186 175.363 l +196.913 175.363 l +196.913 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +197.327 165.176 m +197.327 172.452 l +201.053 172.452 l +201.053 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +201.467 165.176 m +201.467 173.908 l +205.193 173.908 l +205.193 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +205.608 165.176 m +205.608 169.542 l +209.334 169.542 l +209.334 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +209.748 165.176 m +209.748 173.908 l +213.474 173.908 l +213.474 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +213.888 165.176 m +213.888 166.632 l +217.615 166.632 l +217.615 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +218.029 165.176 m +218.029 168.087 l +221.755 168.087 l +221.755 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +222.169 165.176 m +222.169 166.632 l +225.895 166.632 l +225.895 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +226.309 165.176 m +226.309 170.997 l +230.036 170.997 l +230.036 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +230.45 165.176 m +230.45 170.997 l +234.176 170.997 l +234.176 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +234.59 165.176 m +234.59 165.176 l +238.316 165.176 l +238.316 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +238.73 165.176 m +238.73 170.997 l +242.457 170.997 l +242.457 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +242.871 165.176 m +242.871 166.632 l +246.597 166.632 l +246.597 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +247.011 165.176 m +247.011 166.632 l +250.737 166.632 l +250.737 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +251.151 165.176 m +251.151 165.176 l +254.878 165.176 l +254.878 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +255.292 165.176 m +255.292 168.087 l +259.018 168.087 l +259.018 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +259.432 165.176 m +259.432 165.176 l +263.159 165.176 l +263.159 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +263.573 165.176 m +263.573 169.542 l +267.299 169.542 l +267.299 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +267.713 165.176 m +267.713 166.632 l +271.439 166.632 l +271.439 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +271.853 165.176 m +271.853 165.176 l +275.58 165.176 l +275.58 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +275.994 165.176 m +275.994 166.632 l +279.72 166.632 l +279.72 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +280.134 165.176 m +280.134 168.087 l +283.86 168.087 l +283.86 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +284.274 165.176 m +284.274 165.176 l +288.001 165.176 l +288.001 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +288.415 165.176 m +288.415 166.632 l +292.141 166.632 l +292.141 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +292.555 165.176 m +292.555 165.176 l +296.281 165.176 l +296.281 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +296.695 165.176 m +296.695 165.176 l +300.422 165.176 l +300.422 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +300.836 165.176 m +300.836 165.176 l +304.562 165.176 l +304.562 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +304.976 165.176 m +304.976 165.176 l +308.702 165.176 l +308.702 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +309.117 165.176 m +309.117 165.176 l +312.843 165.176 l +312.843 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +313.257 165.176 m +313.257 165.176 l +316.983 165.176 l +316.983 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +317.397 165.176 m +317.397 166.632 l +321.124 166.632 l +321.124 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +321.538 165.176 m +321.538 165.176 l +325.264 165.176 l +325.264 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +325.678 165.176 m +325.678 165.176 l +329.404 165.176 l +329.404 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +329.818 165.176 m +329.818 165.176 l +333.545 165.176 l +333.545 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +333.959 165.176 m +333.959 165.176 l +337.685 165.176 l +337.685 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +338.099 165.176 m +338.099 165.176 l +341.825 165.176 l +341.825 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +342.239 165.176 m +342.239 165.176 l +345.966 165.176 l +345.966 165.176 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 101.6 72 165.2 clipbox +346.38 165.17... [truncated message content] |
From: <jd...@us...> - 2007-10-26 20:16:08
|
Revision: 4029 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4029&view=rev Author: jdh2358 Date: 2007-10-26 13:15:51 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added stats distributions examples Modified Paths: -------------- trunk/py4science/examples/stats_descriptives.py trunk/py4science/examples/stats_distributions.py Modified: trunk/py4science/examples/stats_descriptives.py =================================================================== --- trunk/py4science/examples/stats_descriptives.py 2007-10-26 20:15:42 UTC (rev 4028) +++ trunk/py4science/examples/stats_descriptives.py 2007-10-26 20:15:51 UTC (rev 4029) @@ -76,21 +76,27 @@ c = C() N = 5 fig = c.fig = figfunc() + fig.subplots_adjust(hspace=0.3) ax = c.ax1 = fig.add_subplot(N,1,1) c.plot = ax.plot(data, fmt) + ax.set_ylabel('data') ax = c.ax2 = fig.add_subplot(N,1,2) c.hist = ax.hist(data, bins) + ax.set_ylabel('hist') - ax = c.ax3 = fig.add_subplot(N,1,3) - c.acorr = ax.acorr(data, detrend=detrend, usevlines=True, maxlags=maxlags) + c.acorr = ax.acorr(data, detrend=detrend, usevlines=True, + maxlags=maxlags, normed=True) + ax.set_ylabel('acorr') ax = c.ax4 = fig.add_subplot(N,1,4) c.psd = ax.psd(data, Fs=Fs, detrend=detrend) + ax.set_ylabel('psd') ax = c.ax5 = fig.add_subplot(N,1,5) c.specgtram = ax.specgram(data, Fs=Fs, detrend=detrend) + ax.set_ylabel('specgram') return c @@ -111,6 +117,9 @@ desc = Descriptives(data) print desc - c = desc.plots(pylab.figure, Fs=12, fmt='-o') + c = desc.plots(pylab.figure, Fs=12, fmt='-') c.ax1.set_title(fname) + + c.fig.savefig('stats_descriptives.png', dpi=150) + c.fig.savefig('stats_descriptives.eps') pylab.show() Modified: trunk/py4science/examples/stats_distributions.py =================================================================== --- trunk/py4science/examples/stats_distributions.py 2007-10-26 20:15:42 UTC (rev 4028) +++ trunk/py4science/examples/stats_distributions.py 2007-10-26 20:15:51 UTC (rev 4029) @@ -35,18 +35,18 @@ # 1/lambda. Plot all three on the same graph and make a legend. # Decorate your graphs with an xlabel, ylabel and title fig = figure() -ax = fig.add_subplot(111) +ax = fig.add_subplot(311) p, bins, patches = ax.hist(wait_times, 100, normed=True) l1, = ax.plot(bins, rate*numpy.exp(-rate * bins), lw=2, color='red') l2, = ax.plot(bins, scipy.stats.expon.pdf(bins, 0, 1./rate), lw=2, ls='--', color='green') -ax.set_xlabel('waiting time') + ax.set_ylabel('PDF') -ax.set_title('waiting time density of a %dHz Poisson emitter'%rate) +ax.set_title('waiting time densities of a %dHz Poisson emitter'%rate) +ax.text(0.05, 0.9, 'one interval', transform=ax.transAxes) ax.legend((patches[0], l1, l2), ('simulated', 'analytic', 'scipy.stats.expon')) - # plot the distribution of waiting times for two events; the # distribution of waiting times for N events should equal a N-th order # gamma distribution (the exponential distribution is a 1st order @@ -54,17 +54,15 @@ # Hint: you can stride your emission times array to get every 2nd # emission wait_times2 = numpy.diff(emit_times[::2]) -fig = figure() -ax = fig.add_subplot(111) +ax = fig.add_subplot(312) p, bins, patches = ax.hist(wait_times2, 100, normed=True) l1, = ax.plot(bins, scipy.stats.gamma.pdf(bins, 2, 0, 1./rate), lw=2, ls='-', color='red') -ax.set_xlabel('2 event waiting time 2 events') + ax.set_ylabel('PDF') -ax.set_title('waiting time density of a %dHz Poisson emitter'%rate) +ax.text(0.05, 0.9, 'two intervals', transform=ax.transAxes) ax.legend((patches[0], l1), ('simulated', 'scipy.stats.gamma')) - # plot the distribution of waiting times for 10 events; again the # distribution will be a 10th order gamma distribution so plot that # along with the empirical density. The central limit thm says that @@ -81,19 +79,20 @@ mu, var = 10*expon_mean, 10*expon_var sigma = numpy.sqrt(var) wait_times10 = numpy.diff(emit_times[::10]) -fig = figure() -ax = fig.add_subplot(111) +ax = fig.add_subplot(313) p, bins, patches = ax.hist(wait_times10, 100, normed=True) l1, = ax.plot(bins, scipy.stats.gamma.pdf(bins, 10, 0, 1./rate), lw=2, ls='-', color='red') l2, = ax.plot(bins, scipy.stats.norm.pdf(bins, mu, sigma), lw=2, ls='--', color='green') -ax.set_xlabel('waiting time 10 events') +ax.set_xlabel('waiting times') ax.set_ylabel('PDF') -ax.set_title('10 event waiting time density of a %dHz Poisson emitter'%rate) +ax.text(0.1, 0.9, 'ten intervals', transform=ax.transAxes) ax.legend((patches[0], l1, l2), ('simulated', 'scipy.stats.gamma', 'normal approx')) +fig.savefig('stats_distributions.png', dpi=150) +fig.savefig('stats_distributions.eps') show() This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-26 20:16:08
|
Revision: 4028 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4028&view=rev Author: jdh2358 Date: 2007-10-26 13:15:42 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added stats distributions examples Added Paths: ----------- trunk/py4science/workbook/fig/stats_descriptives.eps trunk/py4science/workbook/fig/stats_descriptives.png Added: trunk/py4science/workbook/fig/stats_descriptives.eps =================================================================== --- trunk/py4science/workbook/fig/stats_descriptives.eps (rev 0) +++ trunk/py4science/workbook/fig/stats_descriptives.eps 2007-10-26 20:15:42 UTC (rev 4028) @@ -0,0 +1,6621 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Title: stats_descriptives.eps +%%Creator: matplotlib version 0.90.1, http://matplotlib.sourceforge.net/ +%%CreationDate: Fri Oct 26 15:05:57 2007 +%%Orientation: portrait +%%BoundingBox: 18 180 594 612 +%%EndComments +%%BeginProlog +/mpldict 7 dict def +mpldict begin +/m { moveto } bind def +/l { lineto } bind def +/r { rlineto } bind def +/box { +m +1 index 0 r +0 exch r +neg 0 r +closepath +} bind def +/clipbox { +box +clip +newpath +} bind def +/ellipse { +newpath +matrix currentmatrix 7 1 roll +translate +scale +0 0 1 5 3 roll arc +setmatrix +closepath +} bind def +%!PS-Adobe-3.0 Resource-Font +%%Title: Bitstream Vera Sans +%%Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. +%%Creator: Converted from TrueType by PPR +25 dict begin +/_d{bind def}bind def +/_m{moveto}_d +/_l{lineto}_d +/_cl{closepath eofill}_d +/_c{curveto}_d +/_sc{7 -1 roll{setcachedevice}{pop pop pop pop pop pop}ifelse}_d +/_e{exec}_d +/FontName /BitstreamVeraSans-Roman def +/PaintType 0 def +/FontMatrix[.001 0 0 .001 0 0]def +/FontBBox[-182 -235 1287 928]def +/FontType 3 def +/Encoding StandardEncoding def +/FontInfo 10 dict dup begin +/FamilyName (Bitstream Vera Sans) def +/FullName (Bitstream Vera Sans) def +/Notice (Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.) def +/Weight (Roman) def +/Version (Release 1.10) def +/ItalicAngle 0.0 def +/isFixedPitch false def +/UnderlinePosition -213 def +/UnderlineThickness 143 def +end readonly def +/CharStrings 32 dict dup begin +/hyphen{361 0 49 234 312 314 _sc +49 314 _m +312 314 _l +312 234 _l +49 234 _l +49 314 _l +_cl}_d +/period{318 0 107 0 210 124 _sc +107 124 _m +210 124 _l +210 0 _l +107 0 _l +107 124 _l +_cl}_d +/slash{337 0 0 -92 337 729 _sc +254 729 _m +337 729 _l +83 -92 _l +0 -92 _l +254 729 _l +_cl}_d +/zero{636 0 66 -13 570 742 _sc +318 664 _m +267 664 229 639 203 589 _c +177 539 165 464 165 364 _c +165 264 177 189 203 139 _c +229 89 267 64 318 64 _c +369 64 407 89 433 139 _c +458 189 471 264 471 364 _c +471 464 458 539 433 589 _c +407 639 369 664 318 664 _c +318 742 _m +399 742 461 709 505 645 _c +548 580 570 486 570 364 _c +570 241 548 147 505 83 _c +461 19 399 -13 318 -13 _c +236 -13 173 19 130 83 _c +87 147 66 241 66 364 _c +66 486 87 580 130 645 _c +173 709 236 742 318 742 _c +_cl}_d +/one{636 0 110 0 544 729 _sc +124 83 _m +285 83 _l +285 639 _l +110 604 _l +110 694 _l +284 729 _l +383 729 _l +383 83 _l +544 83 _l +544 0 _l +124 0 _l +124 83 _l +_cl}_d +/two{{636 0 73 0 536 742 _sc +192 83 _m +536 83 _l +536 0 _l +73 0 _l +73 83 _l +110 121 161 173 226 239 _c +290 304 331 346 348 365 _c +380 400 402 430 414 455 _c +426 479 433 504 433 528 _c +433 566 419 598 392 622 _c +365 646 330 659 286 659 _c +255 659 222 653 188 643 _c +154 632 117 616 78 594 _c +78 694 _l +118 710 155 722 189 730 _c +223 738 255 742 284 742 _c +359 742 419 723 464 685 _c +509 647 532 597 532 534 _c +532 504 526 475 515 449 _c +504 422 484 390 454 354 _c +446 344 420 317 376 272 _c +332 227 271 164 192 83 _c +_cl}_e}_d +/three{{636 0 76 -13 556 742 _sc +406 393 _m +453 383 490 362 516 330 _c +542 298 556 258 556 212 _c +556 140 531 84 482 45 _c +432 6 362 -13 271 -13 _c +240 -13 208 -10 176 -4 _c +144 1 110 10 76 22 _c +76 117 _l +103 101 133 89 166 81 _c +198 73 232 69 268 69 _c +330 69 377 81 409 105 _c +441 129 458 165 458 212 _c +458 254 443 288 413 312 _c +383 336 341 349 287 349 _c +202 349 _l +202 430 _l +291 430 _l +339 430 376 439 402 459 _c +428 478 441 506 441 543 _c +441 580 427 609 401 629 _c +374 649 336 659 287 659 _c +260 659 231 656 200 650 _c +169 644 135 635 98 623 _c +98 711 _l +135 721 170 729 203 734 _c +235 739 266 742 296 742 _c +}_e{370 742 429 725 473 691 _c +517 657 539 611 539 553 _c +539 513 527 479 504 451 _c +481 423 448 403 406 393 _c +_cl}_e}_d +/four{636 0 49 0 580 729 _sc +378 643 _m +129 254 _l +378 254 _l +378 643 _l +352 729 _m +476 729 _l +476 254 _l +580 254 _l +580 172 _l +476 172 _l +476 0 _l +378 0 _l +378 172 _l +49 172 _l +49 267 _l +352 729 _l +_cl}_d +/five{{636 0 77 -13 549 729 _sc +108 729 _m +495 729 _l +495 646 _l +198 646 _l +198 467 _l +212 472 227 476 241 478 _c +255 480 270 482 284 482 _c +365 482 429 459 477 415 _c +525 370 549 310 549 234 _c +549 155 524 94 475 51 _c +426 8 357 -13 269 -13 _c +238 -13 207 -10 175 -6 _c +143 -1 111 6 77 17 _c +77 116 _l +106 100 136 88 168 80 _c +199 72 232 69 267 69 _c +323 69 368 83 401 113 _c +433 143 450 183 450 234 _c +450 284 433 324 401 354 _c +368 384 323 399 267 399 _c +241 399 214 396 188 390 _c +162 384 135 375 108 363 _c +108 729 _l +_cl}_e}_d +/six{{636 0 70 -13 573 742 _sc +330 404 _m +286 404 251 388 225 358 _c +199 328 186 286 186 234 _c +186 181 199 139 225 109 _c +251 79 286 64 330 64 _c +374 64 409 79 435 109 _c +461 139 474 181 474 234 _c +474 286 461 328 435 358 _c +409 388 374 404 330 404 _c +526 713 _m +526 623 _l +501 635 476 644 451 650 _c +425 656 400 659 376 659 _c +310 659 260 637 226 593 _c +192 549 172 482 168 394 _c +187 422 211 444 240 459 _c +269 474 301 482 336 482 _c +409 482 467 459 509 415 _c +551 371 573 310 573 234 _c +573 159 550 99 506 54 _c +462 9 403 -13 330 -13 _c +246 -13 181 19 137 83 _c +92 147 70 241 70 364 _c +70 479 97 571 152 639 _c +206 707 280 742 372 742 _c +}_e{396 742 421 739 447 735 _c +472 730 498 723 526 713 _c +_cl}_e}_d +/seven{636 0 82 0 551 729 _sc +82 729 _m +551 729 _l +551 687 _l +286 0 _l +183 0 _l +432 646 _l +82 646 _l +82 729 _l +_cl}_d +/eight{{636 0 68 -13 568 742 _sc +318 346 _m +271 346 234 333 207 308 _c +180 283 167 249 167 205 _c +167 161 180 126 207 101 _c +234 76 271 64 318 64 _c +364 64 401 76 428 102 _c +455 127 469 161 469 205 _c +469 249 455 283 429 308 _c +402 333 365 346 318 346 _c +219 388 _m +177 398 144 418 120 447 _c +96 476 85 511 85 553 _c +85 611 105 657 147 691 _c +188 725 245 742 318 742 _c +390 742 447 725 489 691 _c +530 657 551 611 551 553 _c +551 511 539 476 515 447 _c +491 418 459 398 417 388 _c +464 377 501 355 528 323 _c +554 291 568 251 568 205 _c +568 134 546 80 503 43 _c +459 5 398 -13 318 -13 _c +237 -13 175 5 132 43 _c +89 80 68 134 68 205 _c +68 251 81 291 108 323 _c +134 355 171 377 219 388 _c +}_e{183 544 _m +183 506 194 476 218 455 _c +242 434 275 424 318 424 _c +360 424 393 434 417 455 _c +441 476 453 506 453 544 _c +453 582 441 611 417 632 _c +393 653 360 664 318 664 _c +275 664 242 653 218 632 _c +194 611 183 582 183 544 _c +_cl}_e}_d +/nine{{636 0 63 -13 566 742 _sc +110 15 _m +110 105 _l +134 93 159 84 185 78 _c +210 72 235 69 260 69 _c +324 69 374 90 408 134 _c +442 178 462 244 468 334 _c +448 306 424 284 396 269 _c +367 254 335 247 300 247 _c +226 247 168 269 126 313 _c +84 357 63 417 63 494 _c +63 568 85 628 129 674 _c +173 719 232 742 306 742 _c +390 742 455 709 499 645 _c +543 580 566 486 566 364 _c +566 248 538 157 484 89 _c +429 21 356 -13 264 -13 _c +239 -13 214 -10 189 -6 _c +163 -2 137 5 110 15 _c +306 324 _m +350 324 385 339 411 369 _c +437 399 450 441 450 494 _c +450 546 437 588 411 618 _c +385 648 350 664 306 664 _c +262 664 227 648 201 618 _c +175 588 162 546 162 494 _c +}_e{162 441 175 399 201 369 _c +227 339 262 324 306 324 _c +_cl}_e}_d +/F{575 0 98 0 517 729 _sc +98 729 _m +517 729 _l +517 646 _l +197 646 _l +197 431 _l +486 431 _l +486 348 _l +197 348 _l +197 0 _l +98 0 _l +98 729 _l +_cl}_d +/a{{613 0 60 -13 522 560 _sc +343 275 _m +270 275 220 266 192 250 _c +164 233 150 205 150 165 _c +150 133 160 107 181 89 _c +202 70 231 61 267 61 _c +317 61 357 78 387 114 _c +417 149 432 196 432 255 _c +432 275 _l +343 275 _l +522 312 _m +522 0 _l +432 0 _l +432 83 _l +411 49 385 25 355 10 _c +325 -5 287 -13 243 -13 _c +187 -13 142 2 109 33 _c +76 64 60 106 60 159 _c +60 220 80 266 122 298 _c +163 329 224 345 306 345 _c +432 345 _l +432 354 _l +432 395 418 427 391 450 _c +364 472 326 484 277 484 _c +245 484 215 480 185 472 _c +155 464 127 453 100 439 _c +100 522 _l +}_e{132 534 164 544 195 550 _c +226 556 256 560 286 560 _c +365 560 424 539 463 498 _c +502 457 522 395 522 312 _c +_cl}_e}_d +/c{{550 0 55 -13 488 560 _sc +488 526 _m +488 442 _l +462 456 437 466 411 473 _c +385 480 360 484 334 484 _c +276 484 230 465 198 428 _c +166 391 150 339 150 273 _c +150 206 166 154 198 117 _c +230 80 276 62 334 62 _c +360 62 385 65 411 72 _c +437 79 462 90 488 104 _c +488 21 _l +462 9 436 0 410 -5 _c +383 -10 354 -13 324 -13 _c +242 -13 176 12 128 64 _c +79 115 55 185 55 273 _c +55 362 79 432 128 483 _c +177 534 244 560 330 560 _c +358 560 385 557 411 551 _c +437 545 463 537 488 526 _c +_cl}_e}_d +/d{{635 0 55 -13 544 760 _sc +454 464 _m +454 760 _l +544 760 _l +544 0 _l +454 0 _l +454 82 _l +435 49 411 25 382 10 _c +353 -5 319 -13 279 -13 _c +213 -13 159 13 117 65 _c +75 117 55 187 55 273 _c +55 359 75 428 117 481 _c +159 533 213 560 279 560 _c +319 560 353 552 382 536 _c +411 520 435 496 454 464 _c +148 273 _m +148 207 161 155 188 117 _c +215 79 253 61 301 61 _c +348 61 385 79 413 117 _c +440 155 454 207 454 273 _c +454 339 440 390 413 428 _c +385 466 348 485 301 485 _c +253 485 215 466 188 428 _c +161 390 148 339 148 273 _c +_cl}_e}_d +/e{{615 0 55 -13 562 560 _sc +562 296 _m +562 252 _l +149 252 _l +153 190 171 142 205 110 _c +238 78 284 62 344 62 _c +378 62 412 66 444 74 _c +476 82 509 95 541 113 _c +541 28 _l +509 14 476 3 442 -3 _c +408 -9 373 -13 339 -13 _c +251 -13 182 12 131 62 _c +80 112 55 181 55 268 _c +55 357 79 428 127 481 _c +175 533 241 560 323 560 _c +397 560 455 536 498 489 _c +540 441 562 377 562 296 _c +472 322 _m +471 371 457 410 431 440 _c +404 469 368 484 324 484 _c +274 484 234 469 204 441 _c +174 413 156 373 152 322 _c +472 322 _l +_cl}_e}_d +/g{{635 0 55 -207 544 560 _sc +454 280 _m +454 344 440 395 414 431 _c +387 467 349 485 301 485 _c +253 485 215 467 188 431 _c +161 395 148 344 148 280 _c +148 215 161 165 188 129 _c +215 93 253 75 301 75 _c +349 75 387 93 414 129 _c +440 165 454 215 454 280 _c +544 68 _m +544 -24 523 -93 482 -139 _c +440 -184 377 -207 292 -207 _c +260 -207 231 -204 203 -200 _c +175 -195 147 -188 121 -178 _c +121 -91 _l +147 -105 173 -115 199 -122 _c +225 -129 251 -133 278 -133 _c +336 -133 380 -117 410 -87 _c +439 -56 454 -10 454 52 _c +454 96 _l +435 64 411 40 382 24 _c +353 8 319 0 279 0 _c +211 0 157 25 116 76 _c +75 127 55 195 55 280 _c +55 364 75 432 116 483 _c +157 534 211 560 279 560 _c +}_e{319 560 353 552 382 536 _c +411 520 435 496 454 464 _c +454 547 _l +544 547 _l +544 68 _l +_cl}_e}_d +/h{634 0 91 0 549 760 _sc +549 330 _m +549 0 _l +459 0 _l +459 327 _l +459 379 448 417 428 443 _c +408 469 378 482 338 482 _c +289 482 251 466 223 435 _c +195 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 760 _l +181 760 _l +181 462 _l +202 494 227 519 257 535 _c +286 551 320 560 358 560 _c +420 560 468 540 500 501 _c +532 462 549 405 549 330 _c +_cl}_d +/i{278 0 94 0 184 760 _sc +94 547 _m +184 547 _l +184 0 _l +94 0 _l +94 547 _l +94 760 _m +184 760 _l +184 646 _l +94 646 _l +94 760 _l +_cl}_d +/l{278 0 94 0 184 760 _sc +94 760 _m +184 760 _l +184 0 _l +94 0 _l +94 760 _l +_cl}_d +/m{{974 0 91 0 889 560 _sc +520 442 _m +542 482 569 511 600 531 _c +631 550 668 560 711 560 _c +767 560 811 540 842 500 _c +873 460 889 403 889 330 _c +889 0 _l +799 0 _l +799 327 _l +799 379 789 418 771 444 _c +752 469 724 482 686 482 _c +639 482 602 466 575 435 _c +548 404 535 362 535 309 _c +535 0 _l +445 0 _l +445 327 _l +445 379 435 418 417 444 _c +398 469 369 482 331 482 _c +285 482 248 466 221 435 _c +194 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +201 495 226 520 255 536 _c +283 552 317 560 357 560 _c +397 560 430 550 458 530 _c +486 510 506 480 520 442 _c +}_e{_cl}_e}_d +/n{634 0 91 0 549 560 _sc +549 330 _m +549 0 _l +459 0 _l +459 327 _l +459 379 448 417 428 443 _c +408 469 378 482 338 482 _c +289 482 251 466 223 435 _c +195 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +202 494 227 519 257 535 _c +286 551 320 560 358 560 _c +420 560 468 540 500 501 _c +532 462 549 405 549 330 _c +_cl}_d +/o{612 0 55 -13 557 560 _sc +306 484 _m +258 484 220 465 192 427 _c +164 389 150 338 150 273 _c +150 207 163 156 191 118 _c +219 80 257 62 306 62 _c +354 62 392 80 420 118 _c +448 156 462 207 462 273 _c +462 337 448 389 420 427 _c +392 465 354 484 306 484 _c +306 560 _m +384 560 445 534 490 484 _c +534 433 557 363 557 273 _c +557 183 534 113 490 63 _c +445 12 384 -13 306 -13 _c +227 -13 165 12 121 63 _c +77 113 55 183 55 273 _c +55 363 77 433 121 484 _c +165 534 227 560 306 560 _c +_cl}_d +/p{{635 0 91 -207 580 560 _sc +181 82 _m +181 -207 _l +91 -207 _l +91 547 _l +181 547 _l +181 464 _l +199 496 223 520 252 536 _c +281 552 316 560 356 560 _c +422 560 476 533 518 481 _c +559 428 580 359 580 273 _c +580 187 559 117 518 65 _c +476 13 422 -13 356 -13 _c +316 -13 281 -5 252 10 _c +223 25 199 49 181 82 _c +487 273 _m +487 339 473 390 446 428 _c +418 466 381 485 334 485 _c +286 485 249 466 222 428 _c +194 390 181 339 181 273 _c +181 207 194 155 222 117 _c +249 79 286 61 334 61 _c +381 61 418 79 446 117 _c +473 155 487 207 487 273 _c +_cl}_e}_d +/q{{635 0 55 -207 544 560 _sc +148 273 _m +148 207 161 155 188 117 _c +215 79 253 61 301 61 _c +348 61 385 79 413 117 _c +440 155 454 207 454 273 _c +454 339 440 390 413 428 _c +385 466 348 485 301 485 _c +253 485 215 466 188 428 _c +161 390 148 339 148 273 _c +454 82 _m +435 49 411 25 382 10 _c +353 -5 319 -13 279 -13 _c +213 -13 159 13 117 65 _c +75 117 55 187 55 273 _c +55 359 75 428 117 481 _c +159 533 213 560 279 560 _c +319 560 353 552 382 536 _c +411 520 435 496 454 464 _c +454 547 _l +544 547 _l +544 -207 _l +454 -207 _l +454 82 _l +_cl}_e}_d +/r{411 0 91 0 411 560 _sc +411 463 _m +401 469 390 473 378 476 _c +366 478 353 480 339 480 _c +288 480 249 463 222 430 _c +194 397 181 350 181 288 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +199 495 224 520 254 536 _c +284 552 321 560 365 560 _c +371 560 378 559 386 559 _c +393 558 401 557 411 555 _c +411 463 _l +_cl}_d +/s{{521 0 54 -13 472 560 _sc +443 531 _m +443 446 _l +417 458 391 468 364 475 _c +336 481 308 485 279 485 _c +234 485 200 478 178 464 _c +156 450 145 430 145 403 _c +145 382 153 366 169 354 _c +185 342 217 330 265 320 _c +296 313 _l +360 299 405 279 432 255 _c +458 230 472 195 472 151 _c +472 100 452 60 412 31 _c +372 1 316 -13 246 -13 _c +216 -13 186 -10 154 -5 _c +122 0 89 8 54 20 _c +54 113 _l +87 95 120 82 152 74 _c +184 65 216 61 248 61 _c +290 61 323 68 346 82 _c +368 96 380 117 380 144 _c +380 168 371 187 355 200 _c +339 213 303 226 247 238 _c +216 245 _l +160 257 119 275 95 299 _c +70 323 58 356 58 399 _c +58 450 76 490 112 518 _c +148 546 200 560 268 560 _c +}_e{301 560 332 557 362 552 _c +391 547 418 540 443 531 _c +_cl}_e}_d +/t{392 0 27 0 368 702 _sc +183 702 _m +183 547 _l +368 547 _l +368 477 _l +183 477 _l +183 180 _l +183 135 189 106 201 94 _c +213 81 238 75 276 75 _c +368 75 _l +368 0 _l +276 0 _l +206 0 158 13 132 39 _c +106 65 93 112 93 180 _c +93 477 _l +27 477 _l +27 547 _l +93 547 _l +93 702 _l +183 702 _l +_cl}_d +/u{634 0 85 -13 543 547 _sc +85 216 _m +85 547 _l +175 547 _l +175 219 _l +175 167 185 129 205 103 _c +225 77 255 64 296 64 _c +344 64 383 79 411 110 _c +439 141 453 183 453 237 _c +453 547 _l +543 547 _l +543 0 _l +453 0 _l +453 84 _l +431 50 405 26 377 10 _c +348 -5 315 -13 277 -13 _c +214 -13 166 6 134 45 _c +101 83 85 140 85 216 _c +_cl}_d +/y{592 0 30 -207 562 547 _sc +322 -50 _m +296 -114 271 -157 247 -177 _c +223 -197 191 -207 151 -207 _c +79 -207 _l +79 -132 _l +132 -132 _l +156 -132 175 -126 189 -114 _c +203 -102 218 -75 235 -31 _c +251 9 _l +30 547 _l +125 547 _l +296 119 _l +467 547 _l +562 547 _l +322 -50 _l +_cl}_d +end readonly def + +/BuildGlyph + {exch begin + CharStrings exch + 2 copy known not{pop /.notdef}if + true 3 1 roll get exec + end}_d + +/BuildChar { + 1 index /Encoding get exch get + 1 index /BuildGlyph get exec +}_d + +FontName currentdict end definefont pop +%%EOF +end +%%EndProlog +mpldict begin +18 180 translate +576 432 0 0 clipbox +gsave +1.000 setgray +1.000 setlinewidth +0 setlinejoin +2 setlinecap +[] 0 setdash +0 0 m +0 432 l +576 432 l +576 0 l +closepath +gsave +fill +grestore +stroke +grestore +gsave +0.000 setgray +72 333.058 m +72 388.8 l +518.4 388.8 l +518.4 333.058 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +0.000 0.000 1.000 setrgbcolor +gsave +446.4 55.7419 72 333.058 clipbox +72 360.929 m +73.488 364.911 l +74.976 371.281 l +76.464 367.3 l +77.952 368.892 l +79.44 365.707 l +80.928 360.133 l +82.416 358.54 l +83.904 353.762 l +85.392 350.577 l +86.88 346.595 l +88.368 341.021 l +89.856 346.595 l +91.344 352.17 l +92.832 360.929 l +94.32 359.336 l +95.808 363.318 l +97.296 356.947 l +98.784 355.355 l +100.272 352.966 l +101.76 349.781 l +103.248 344.206 l +104.736 341.021 l +106.224 336.243 l +107.712 340.225 l +109.2 344.206 l +110.688 352.17 l +112.176 360.133 l +113.664 362.522 l +115.152 357.744 l +116.64 357.744 l +118.128 359.336 l +119.616 353.762 l +121.104 353.762 l +122.592 353.762 l +124.08 348.188 l +125.568 349.781 l +127.056 359.336 l +128.544 360.929 l +130.032 366.503 l +131.52 360.929 l +133.008 361.725 l +134.496 362.522 l +135.984 364.114 l +137.472 363.318 l +138.96 360.929 l +140.448 356.151 l +141.936 354.559 l +143.424 362.522 l +144.912 371.281 l +146.4 384.022 l +147.888 381.633 l +149.376 379.244 l +150.864 376.059 l +152.352 368.096 l +153.84 376.059 l +155.328 373.67 l +156.816 367.3 l +158.304 360.929 l +159.792 357.744 l +161.28 362.522 l +162.768 367.3 l +164.256 376.855 l +165.744 384.818 l +167.232 380.837 l +168.72 378.448 l +170.208 371.281 l +171.696 374.466 l +173.184 371.281 l +174.672 372.874 l +176.16 359.336 l +177.648 356.947 l +179.136 359.336 l +180.624 363.318 l +182.112 375.263 l +183.6 374.466 l +185.088 371.281 l +186.576 367.3 l +188.064 368.096 l +189.552 371.281 l +191.04 364.911 l +192.528 360.133 l +194.016 349.781 l +195.504 345.003 l +196.992 351.373 l +198.48 352.17 l +199.968 352.17 l +201.456 345.799 l +202.944 352.17 l +204.432 356.947 l +205.92 360.929 l +207.408 365.707 l +208.896 356.947 l +210.384 353.762 l +211.872 348.188 l +213.36 343.41 l +214.848 346.595 l +216.336 348.984 l +217.824 356.151 l +219.312 352.17 l +220.8 352.966 l +222.288 347.392 l +223.776 345.799 l +225.264 344.206 l +226.752 339.429 l +228.24 340.225 l +229.728 338.632 l +231.216 340.225 l +232.704 339.429 l +234.192 340.225 l +235.68 345.799 l +237.168 342.614 l +238.656 345.799 l +240.144 344.206 l +241.632 341.818 l +243.12 345.799 l +244.608 348.188 l +246.096 348.984 l +247.584 348.188 l +249.072 343.41 l +250.56 352.17 l +252.048 353.762 l +253.536 362.522 l +255.024 364.114 l +256.512 368.096 l +258 364.114 l +259.488 357.744 l +260.976 356.947 l +262.464 355.355 l +263.952 357.744 l +265.44 352.966 l +266.928 355.355 l +268.416 358.54 l +269.904 363.318 l +271.392 367.3 l +272.88 365.707 l +274.368 364.114 l +275.856 363.318 l +277.344 358.54 l +278.832 355.355 l +280.32 359.336 l +281.808 360.929 l +283.296 350.577 l +284.784 347.392 l +286.272 355.355 l +287.76 360.929 l +289.248 370.485 l +290.736 364.911 l +292.224 368.892 l +293.712 368.892 l +295.2 367.3 l +296.688 365.707 l +298.176 360.133 l +299.664 358.54 l +301.152 357.744 l +302.64 354.559 l +304.128 360.929 l +305.616 364.114 l +307.104 388.004 l +308.592 384.022 l +310.08 376.855 l +311.568 369.688 l +313.056 362.522 l +314.544 358.54 l +316.032 364.911 l +317.52 360.133 l +319.008 355.355 l +320.496 356.151 l +321.984 359.336 l +323.472 364.114 l +324.96 375.263 l +326.448 374.466 l +327.936 366.503 l +329.424 363.318 l +330.912 360.929 l +332.4 361.725 l +333.888 358.54 l +335.376 358.54 l +336.864 351.373 l +338.352 346.595 l +339.84 351.373 l +341.328 360.929 l +342.816 371.281 l +344.304 371.281 l +345.792 368.096 l +347.28 368.892 l +348.768 362.522 l +350.256 364.114 l +351.744 360.133 l +353.232 362.522 l +354.72 351.373 l +356.208 350.577 l +357.696 358.54 l +359.184 357.744 l +360.672 363.318 l +362.16 364.911 l +363.648 365.707 l +365.136 363.318 l +366.624 366.503 l +368.112 365.707 l +369.6 356.151 l +371.088 357.744 l +372.576 354.559 l +374.064 348.984 l +375.552 352.966 l +377.04 356.947 l +378.528 363.318 l +380.016 358.54 l +381.504 356.947 l +382.992 356.947 l +384.48 353.762 l +385.968 353.762 l +387.456 347.392 l +388.944 346.595 l +390.432 344.206 l +391.92 340.225 l +393.408 341.021 l +394.896 348.984 l +396.384 353.762 l +397.872 353.762 l +399.36 354.559 l +400.848 354.559 l +402.336 351.373 l +403.824 353.762 l +405.312 346.595 l +406.8 349.781 l +408.288 348.188 l +409.776 345.799 l +411.264 355.355 l +412.752 360.929 l +414.24 361.725 l +415.728 359.336 l +417.216 358.54 l +418.704 359.336 l +420.192 358.54 l +421.68 361.725 l +423.168 357.744 l +424.656 355.355 l +426.144 350.577 l +427.632 350.577 l +429.12 352.17 l +430.608 356.947 l +432.096 364.911 l +433.584 369.688 l +435.072 363.318 l +436.56 364.114 l +438.048 360.929 l +439.536 362.522 l +441.024 362.522 l +442.512 361.725 l +444 359.336 l +445.488 357.744 l +446.976 352.966 l +448.464 363.318 l +449.952 376.059 l +451.44 368.892 l +452.928 368.892 l +454.416 360.929 l +455.904 358.54 l +457.392 364.114 l +458.88 360.133 l +460.368 362.522 l +461.856 352.966 l +463.344 348.984 l +464.832 354.559 l +466.32 354.559 l +467.808 364.911 l +469.296 363.318 l +470.784 367.3 l +472.272 368.096 l +473.76 368.096 l +475.248 367.3 l +476.736 360.929 l +478.224 360.133 l +479.712 352.17 l +stroke +grestore +0.000 setgray +/BitstreamVeraSans-Roman findfont +12.000 scalefont +setfont +68.977 319.98 m +0 0.172 rmoveto +(0) show +0.500 setlinewidth +0 setlinecap +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +146.4 333.058 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +146.4 388.8 o +139.619 319.98 m +0 0.172 rmoveto +(50) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +220.8 333.058 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +220.8 388.8 o +210.394 319.98 m +0 0.172 rmoveto +(100) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +295.2 333.058 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +295.2 388.8 o +284.794 319.98 m +0 0.172 rmoveto +(150) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +369.6 333.058 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +369.6 388.8 o +358.975 319.98 m +0 0.172 rmoveto +(200) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +444 333.058 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +444 388.8 o +433.375 319.98 m +0 0.172 rmoveto +(250) show +507.798 319.98 m +0 0.172 rmoveto +(300) show +54.391 328.519 m +0 0.172 rmoveto +(20) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 341.021 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 341.021 o +54.438 336.482 m +0 0.172 rmoveto +(30) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 348.984 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 348.984 o +54.109 344.445 m +0 0.172 rmoveto +(40) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 356.947 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 356.947 o +54.438 352.408 m +0 0.172 rmoveto +(50) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 364.911 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 364.911 o +54.359 360.372 m +0 0.172 rmoveto +(60) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 372.874 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 372.874 o +54.5 368.335 m +0 0.172 rmoveto +(70) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 380.837 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 380.837 o +54.328 376.298 m +0 0.172 rmoveto +(80) show +54.266 384.261 m +0 0.172 rmoveto +(90) show +49.109 348.281 m +gsave +90 rotate +0 0.172 rmoveto +(data) show +grestore +1.000 setlinewidth +2 setlinecap +72 333.058 m +518.4 333.058 l +518.4 388.8 l +72 388.8 l +72 333.058 l +stroke +/BitstreamVeraSans-Roman findfont +14.000 scalefont +setfont +241.653 389.915 m +0 1.297 rmoveto +(data/hsales.dat) show +gsave +72 260.594 m +72 316.335 l +518.4 316.335 l +518.4 260.594 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +97.509 260.594 m +97.509 264.077 l +101.239 264.077 l +101.239 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +101.654 260.594 m +101.654 260.594 l +105.384 260.594 l +105.384 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +105.799 260.594 m +105.799 260.594 l +109.529 260.594 l +109.529 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +109.944 260.594 m +109.944 260.594 l +113.675 260.594 l +113.675 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +114.089 260.594 m +114.089 264.077 l +117.82 264.077 l +117.82 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +118.234 260.594 m +118.234 260.594 l +121.965 260.594 l +121.965 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +122.379 260.594 m +122.379 267.561 l +126.11 267.561 l +126.11 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +126.525 260.594 m +126.525 278.013 l +130.255 278.013 l +130.255 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +130.67 260.594 m +130.67 260.594 l +134.4 260.594 l +134.4 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +134.815 260.594 m +134.815 271.045 l +138.545 271.045 l +138.545 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +138.96 260.594 m +138.96 264.077 l +142.691 264.077 l +142.691 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +143.105 260.594 m +143.105 260.594 l +146.836 260.594 l +146.836 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +147.25 260.594 m +147.25 264.077 l +150.981 264.077 l +150.981 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +151.395 260.594 m +151.395 267.561 l +155.126 267.561 l +155.126 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +155.541 260.594 m +155.541 260.594 l +159.271 260.594 l +159.271 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +159.686 260.594 m +159.686 278.013 l +163.416 278.013 l +163.416 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +163.831 260.594 m +163.831 264.077 l +167.561 264.077 l +167.561 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +167.976 260.594 m +167.976 260.594 l +171.707 260.594 l +171.707 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +172.121 260.594 m +172.121 281.497 l +175.852 281.497 l +175.852 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +176.266 260.594 m +176.266 260.594 l +179.997 260.594 l +179.997 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +180.411 260.594 m +180.411 281.497 l +184.142 281.497 l +184.142 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +184.557 260.594 m +184.557 271.045 l +188.287 271.045 l +188.287 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +188.702 260.594 m +188.702 260.594 l +192.432 260.594 l +192.432 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +192.847 260.594 m +192.847 278.013 l +196.577 278.013 l +196.577 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +196.992 260.594 m +196.992 278.013 l +200.723 278.013 l +200.723 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +201.137 260.594 m +201.137 260.594 l +204.868 260.594 l +204.868 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +205.282 260.594 m +205.282 274.529 l +209.013 274.529 l +209.013 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +209.427 260.594 m +209.427 278.013 l +213.158 278.013 l +213.158 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +213.573 260.594 m +213.573 260.594 l +217.303 260.594 l +217.303 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +217.718 260.594 m +217.718 278.013 l +221.448 278.013 l +221.448 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +221.863 260.594 m +221.863 291.948 l +225.593 291.948 l +225.593 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +226.008 260.594 m +226.008 260.594 l +229.739 260.594 l +229.739 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +230.153 260.594 m +230.153 281.497 l +233.884 281.497 l +233.884 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +234.298 260.594 m +234.298 298.916 l +238.029 298.916 l +238.029 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +238.443 260.594 m +238.443 260.594 l +242.174 260.594 l +242.174 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +242.589 260.594 m +242.589 284.981 l +246.319 284.981 l +246.319 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +246.734 260.594 m +246.734 288.465 l +250.464 288.465 l +250.464 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +250.879 260.594 m +250.879 260.594 l +254.609 260.594 l +254.609 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +255.024 260.594 m +255.024 274.529 l +258.755 274.529 l +258.755 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +259.169 260.594 m +259.169 260.594 l +262.9 260.594 l +262.9 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +263.314 260.594 m +263.314 291.948 l +267.045 291.948 l +267.045 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +267.459 260.594 m +267.459 295.432 l +271.19 295.432 l +271.19 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +271.605 260.594 m +271.605 260.594 l +275.335 260.594 l +275.335 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +275.75 260.594 m +275.75 302.4 l +279.48 302.4 l +279.48 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +279.895 260.594 m +279.895 295.432 l +283.625 295.432 l +283.625 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +284.04 260.594 m +284.04 260.594 l +287.771 260.594 l +287.771 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +288.185 260.594 m +288.185 288.465 l +291.916 288.465 l +291.916 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +292.33 260.594 m +292.33 316.335 l +296.061 316.335 l +296.061 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +296.475 260.594 m +296.475 260.594 l +300.206 260.594 l +300.206 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +300.621 260.594 m +300.621 278.013 l +304.351 278.013 l +304.351 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +304.766 260.594 m +304.766 298.916 l +308.496 298.916 l +308.496 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +308.911 260.594 m +308.911 260.594 l +312.641 260.594 l +312.641 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +313.056 260.594 m +313.056 302.4 l +316.787 302.4 l +316.787 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +317.201 260.594 m +317.201 291.948 l +320.932 291.948 l +320.932 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +321.346 260.594 m +321.346 260.594 l +325.077 260.594 l +325.077 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +325.491 260.594 m +325.491 284.981 l +329.222 284.981 l +329.222 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +329.637 260.594 m +329.637 281.497 l +333.367 281.497 l +333.367 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +333.782 260.594 m +333.782 260.594 l +337.512 260.594 l +337.512 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +337.927 260.594 m +337.927 271.045 l +341.657 271.045 l +341.657 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +342.072 260.594 m +342.072 260.594 l +345.803 260.594 l +345.803 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +346.217 260.594 m +346.217 288.465 l +349.948 288.465 l +349.948 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +350.362 260.594 m +350.362 281.497 l +354.093 281.497 l +354.093 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +354.507 260.594 m +354.507 260.594 l +358.238 260.594 l +358.238 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +358.653 260.594 m +358.653 281.497 l +362.383 281.497 l +362.383 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +362.798 260.594 m +362.798 267.561 l +366.528 267.561 l +366.528 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +366.943 260.594 m +366.943 260.594 l +370.673 260.594 l +370.673 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +371.088 260.594 m +371.088 264.077 l +374.819 264.077 l +374.819 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +375.233 260.594 m +375.233 288.465 l +378.964 288.465 l +378.964 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +379.378 260.594 m +379.378 260.594 l +383.109 260.594 l +383.109 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +383.523 260.594 m +383.523 260.594 l +387.254 260.594 l +387.254 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +387.669 260.594 m +387.669 264.077 l +391.399 264.077 l +391.399 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +391.814 260.594 m +391.814 260.594 l +395.544 260.594 l +395.544 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +395.959 260.594 m +395.959 264.077 l +399.689 264.077 l +399.689 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +400.104 260.594 m +400.104 271.045 l +403.835 271.045 l +403.835 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +404.249 260.594 m +404.249 260.594 l +407.98 260.594 l +407.98 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +408.394 260.594 m +408.394 267.561 l +412.125 267.561 l +412.125 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +412.539 260.594 m +412.539 271.045 l +416.27 271.045 l +416.27 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +416.685 260.594 m +416.685 260.594 l +420.415 260.594 l +420.415 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +420.83 260.594 m +420.83 267.561 l +424.56 267.561 l +424.56 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +424.975 260.594 m +424.975 260.594 l +428.705 260.594 l +428.705 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +429.12 260.594 m +429.12 260.594 l +432.851 260.594 l +432.851 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +433.265 260.594 m +433.265 264.077 l +436.996 264.077 l +436.996 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +437.41 260.594 m +437.41 260.594 l +441.141 260.594 l +441.141 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +441.555 260.594 m +441.555 264.077 l +445.286 264.077 l +445.286 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +445.701 260.594 m +445.701 260.594 l +449.431 260.594 l +449.431 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +449.846 260.594 m +449.846 260.594 l +453.576 260.594 l +453.576 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +453.991 260.594 m +453.991 264.077 l +457.721 264.077 l +457.721 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +458.136 260.594 m +458.136 264.077 l +461.867 264.077 l +461.867 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +462.281 260.594 m +462.281 260.594 l +466.012 260.594 l +466.012 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +466.426 260.594 m +466.426 260.594 l +470.157 260.594 l +470.157 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +470.571 260.594 m +470.571 260.594 l +474.302 260.594 l +474.302 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +474.717 260.594 m +474.717 260.594 l +478.447 260.594 l +478.447 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +478.862 260.594 m +478.862 267.561 l +482.592 267.561 l +482.592 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +483.007 260.594 m +483.007 264.077 l +486.737 264.077 l +486.737 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +487.152 260.594 m +487.152 260.594 l +490.883 260.594 l +490.883 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +491.297 260.594 m +491.297 260.594 l +495.028 260.594 l +495.028 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +495.442 260.594 m +495.442 260.594 l +499.173 260.594 l +499.173 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +499.587 260.594 m +499.587 260.594 l +503.318 260.594 l +503.318 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +503.733 260.594 m +503.733 260.594 l +507.463 260.594 l +507.463 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 55.74 72 260.6 clipbox +507.878 260.594 m +507.878 264.077 l +511.608 264.077 l +511.608 260.594 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +/BitstreamVeraSans-Roman findfont +12.000 scalefont +setfont +65.195 247.515 m +0 0.172 rmoveto +(20) show +0.500 setlinewidth +0 setlinecap +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +135.771 260.594 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +135.771 316.335 o +128.99 247.515 m +0 0.172 rmoveto +(30) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +199.543 260.594 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +199.543 316.335 o +192.598 247.515 m +0 0.172 rmoveto +(40) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +263.314 260.594 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +263.314 316.335 o +256.533 247.515 m +0 0.172 rmoveto +(50) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +327.086 260.594 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +327.086 316.335 o +320.265 247.515 m +0 0.172 rmoveto +(60) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +390.857 260.594 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +390.857 316.335 o +384.107 247.515 m +0 0.172 rmoveto +(70) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +454.629 260.594 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +454.629 316.335 o +447.793 247.515 m +0 0.172 rmoveto +(80) show +511.533 247.515 m +0 0.172 rmoveto +(90) show +61.953 256.054 m +0 0.172 rmoveto +(0) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 267.561 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 267.561 o +62.438 263.108 m +(2) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 274.529 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 274.529 o +61.625 270.154 m +(4) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 281.497 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 281.497 o +61.969 276.958 m +0 0.172 rmoveto +(6) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 288.465 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 288.465 o +62 283.925 m +0 0.172 rmoveto +(8) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 295.432 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 295.432 o +54.828 290.893 m +0 0.172 rmoveto +(10) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 302.4 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 302.4 o +55.234 297.947 m +(12) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 309.368 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 309.368 o +54.703 304.993 m +(14) show +54.797 311.796 m +0 0.172 rmoveto +(16) show +49.703 278.207 m +gsave +90 rotate +0 0.172 rmoveto +(hist) show +grestore +1.000 setlinewidth +2 setlinecap +72 260.594 m +518.4 260.594 l +518.4 316.335 l +72 316.335 l +72 260.594 l +stroke +gsave +72 188.129 m +72 243.871 l +518.4 243.871 l +518.4 188.129 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +0 setlinecap +gsave +446.4 55.7419 72 188.129 clipbox +72 197.419 m +72 191.827 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +83.16 197.419 m +83.16 192.766 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +94.32 197.419 m +94.32 194.319 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +105.48 197.419 m +105.48 197.756 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +116.64 197.419 m +116.64 200.963 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +127.8 197.419 m +127.8 206.504 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +138.96 197.419 m +138.96 214.402 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +150.12 197.419 m +150.12 221.348 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +161.28 197.419 m +161.28 225.775 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +172.44 197.419 m +172.44 223.062 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +183.6 197.419 m +183.6 217.605 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +194.76 197.419 m +194.76 211.156 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +205.92 197.419 m +205.92 207.592 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +217.08 197.419 m +217.08 207.777 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +228.24 197.419 m +228.24 208.496 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +239.4 197.419 m +239.4 210.638 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +250.56 197.419 m +250.56 213.057 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +261.72 197.419 m +261.72 219.194 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +272.88 197.419 m +272.88 228.392 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +284.04 197.419 m +284.04 237.136 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +295.2 197.419 m +295.2 243.871 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +306.36 197.419 m +306.36 237.136 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +317.52 197.419 m +317.52 228.392 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +328.68 197.419 m +328.68 219.194 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +339.84 197.419 m +339.84 213.057 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +351 197.419 m +351 210.638 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +362.16 197.419 m +362.16 208.496 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +373.32 197.419 m +373.32 207.777 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +384.48 197.419 m +384.48 207.592 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +395.64 197.419 m +395.64 211.156 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +406.8 197.419 m +406.8 217.605 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +417.96 197.419 m +417.96 223.062 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +429.12 197.419 m +429.12 225.775 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +440.28 197.419 m +440.28 221.348 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +451.44 197.419 m +451.44 214.402 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +462.6 197.419 m +462.6 206.504 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +473.76 197.419 m +473.76 200.963 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +484.92 197.419 m +484.92 197.756 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +496.08 197.419 m +496.08 194.319 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +507.24 197.419 m +507.24 192.766 l +stroke +grestore +gsave +446.4 55.7419 72 188.129 clipbox +518.4 197.419 m +518.4 191.827 l +stroke +grestore +0.000 0.000 1.000 setrgbcolor +2 setlinecap +gsave +446.4 55.7419 72 188.129 clipbox +72 197.419 m +518.4 197.419 l +stroke +grestore +0.000 setgray +62.891 175.051 m +0 0.172 rmoveto +(-20) show +0.500 setlinewidth +0 setlinecap +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +127.8 188.129 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +127.8 243.871 o +118.816 175.207 m +0 0.172 rmoveto +(-15) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +183.6 188.129 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +183.6 243.871 o +174.491 175.051 m +0 0.172 rmoveto +(-10) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +239.4 188.129 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +239.4 243.871 o +234.236 175.207 m +0 0.172 rmoveto +(-5) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +295.2 188.129 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +295.2 243.871 o +292.177 175.051 m +0 0.172 rmoveto +(0) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +351 188.129 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +351 243.871 o +348.164 175.207 m +0 0.172 rmoveto +(5) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +406.8 188.129 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +406.8 243.871 o +400.214 175.051 m +0 0.172 rmoveto +(10) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +462.6 188.129 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +462.6 243.871 o +456.139 175.207 m +0 0.172 rmoveto +(15) show +511.595 175.051 m +0 0.172 rmoveto +(20) show +46.375 183.59 m +0 0.172 rmoveto +(-0.2) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 197.419 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 197.419 o +50.5 192.88 m +0 0.172 rmoveto +(0.0) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 206.71 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 206.71 o +50.906 202.171 m +0 0.172 rmoveto +(0.2) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 216 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 216 o +50.375 211.461 m +0 0.172 rmoveto +(0.4) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 225.29 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 225.29 o +50.469 220.751 m +0 0.172 rmoveto +(0.6) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 234.581 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 234.581 o +50.531 230.042 m +0 0.172 rmoveto +(0.8) show +51.016 239.332 m +0 0.172 rmoveto +(1.0) show +41.375 200.773 m +gsave +90 rotate +0 0.172 rmoveto +(acorr) show +grestore +1.000 setlinewidth +2 setlinecap +72 188.129 m +518.4 188.129 l +518.4 243.871 l +72 243.871 l +72 188.129 l +stroke +gsave +72 115.665 m +72 171.406 l +518.4 171.406 l +518.4 115.665 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +0.000 0.000 1.000 setrgbcolor +gsave +446.4 55.7419 72 115.665 clipbox +72 131.768 m +75.4875 157.58 l +78.975 168.249 l +82.4625 167.539 l +85.95 160.965 l +89.4375 152.235 l +92.925 148.27 l +96.4125 156.834 l +99.9 156.828 l +103.387 154.091 l +106.875 151.255 l +110.362 146.123 l +113.85 148.497 l +117.337 138.409 l +120.825 136.138 l +124.312 132.087 l +127.8 145.768 l +131.287 149.808 l +134.775 148.794 l +138.262 157.254 l +141.75 151.62 l +145.238 163.582 l +148.725 163.433 l +152.212 149.77 l +155.7 140.359 l +159.188 139.741 l +162.675 146.808 l +166.162 143.479 l +169.65 132.278 l +173.137 147.809 l +176.625 151.946 l +180.112 150.793 l +183.6 142.867 l +187.087 137.698 l +190.575 142.166 l +194.062 135.995 l +197.55 133.521 l +201.037 141.334 l +204.525 146.101 l +208.012 140.201 l +211.5 141.584 l +214.987 138.827 l +218.475 155.657 l +221.962 157.146 l +225.45 142.232 l +228.937 151.373 l +232.425 143.957 l +235.912 142.887 l +239.4 145.559 l +242.887 135.514 l +246.375 137.948 l +249.862 142.038 l +253.35 137.948 l +256.837 132.817 l +260.325 143.538 l +263.812 143.433 l +267.3 135.632 l +270.787 132.983 l +274.275 139.07 l +277.762 145.015 l +281.25 145.097 l +284.737 138.874 l +288.225 138.787 l +291.712 143.219 l +295.2 141.546 l +298.688 132.238 l +302.175 130.688 l +305.662 134.86 l +309.15 132.04 l +312.637 130.759 l +316.125 134.748 l +319.612 132.653 l +323.1 135.343 l +326.587 128.186 l +330.075 137.692 l +333.562 140.86 l +337.05 139.633 l +340.537 137.988 l +344.025 131.188 l +347.512 121.002 l +351 135.949 l +354.487 138.745 l +357.975 130.611 l +361.462 142.219 l +364.95 141.444 l +368.437 136.326 l +371.925 135.176 l +375.412 135.681 l +378.9 137.327 l +382.387 134.265 l +385.875 131.825 l +389.362 127.172 l +392.85 122.079 l +396.337 134.331 l +399.825 137.916 l +403.312 133.714 l +406.8 129.788 l +410.287 128.439 l +413.775 133.086 l +417.262 138.951 l +420.75 136.9 l +424.237 134.914 l +427.725 133.348 l +431.212 126.258... [truncated message content] |
From: <jd...@us...> - 2007-10-26 19:57:07
|
Revision: 4027 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4027&view=rev Author: jdh2358 Date: 2007-10-26 12:57:04 -0700 (Fri, 26 Oct 2007) Log Message: ----------- modified stats descriptives Modified Paths: -------------- trunk/py4science/examples/stats_descriptives.py Modified: trunk/py4science/examples/stats_descriptives.py =================================================================== --- trunk/py4science/examples/stats_descriptives.py 2007-10-26 19:55:21 UTC (rev 4026) +++ trunk/py4science/examples/stats_descriptives.py 2007-10-26 19:57:04 UTC (rev 4027) @@ -101,7 +101,7 @@ # will have to do some extra parsing data = [] fname = 'data/nm560.dat' # tree rings in New Mexico 837-1987 - #fname = 'data/hsales.dat' # home sales + fname = 'data/hsales.dat' # home sales for line in file(fname): line = line.strip() if not line: continue @@ -109,8 +109,8 @@ val = vals[0] data.append(float(val)) - #desc = Descriptives(data) - #print desc - #c = desc.plots(pylab.figure, Fs=12, fmt='-o') - #c.ax1.set_title(fname) - #pylab.show() + desc = Descriptives(data) + print desc + c = desc.plots(pylab.figure, Fs=12, fmt='-o') + c.ax1.set_title(fname) + pylab.show() This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-26 19:55:27
|
Revision: 4026 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4026&view=rev Author: jdh2358 Date: 2007-10-26 12:55:21 -0700 (Fri, 26 Oct 2007) Log Message: ----------- updated workbook Modified Paths: -------------- trunk/py4science/workbook/convolution.tex trunk/py4science/workbook/fft_imdenoise.tex trunk/py4science/workbook/main.pdf trunk/py4science/workbook/quad_newton.tex trunk/py4science/workbook/trapezoid.tex Modified: trunk/py4science/workbook/convolution.tex =================================================================== --- trunk/py4science/workbook/convolution.tex 2007-10-26 19:50:21 UTC (rev 4025) +++ trunk/py4science/workbook/convolution.tex 2007-10-26 19:55:21 UTC (rev 4026) @@ -1,3 +1,5 @@ +\section{Convolution} +\label{sec:convolution} \begin{center}% Modified: trunk/py4science/workbook/fft_imdenoise.tex =================================================================== --- trunk/py4science/workbook/fft_imdenoise.tex 2007-10-26 19:50:21 UTC (rev 4025) +++ trunk/py4science/workbook/fft_imdenoise.tex 2007-10-26 19:55:21 UTC (rev 4026) @@ -1,3 +1,6 @@ +\section{FFT Image Denoising} +\label{sec:fft_imdenoise} + Convolution of an input with with a linear filter in the termporal or spatial domain is equivalent to multiplication by the fourier transforms of the input and the filter in the spectral domain. This Modified: trunk/py4science/workbook/main.pdf =================================================================== --- trunk/py4science/workbook/main.pdf 2007-10-26 19:50:21 UTC (rev 4025) +++ trunk/py4science/workbook/main.pdf 2007-10-26 19:55:21 UTC (rev 4026) @@ -90,9 +90,21 @@ (Chapter 6. Signal processing) endobj 65 0 obj -<< /S /GoTo /D [66 0 R /Fit ] >> +<< /S /GoTo /D (section.6.1) >> endobj -68 0 obj << +68 0 obj +(1. Convolution) +endobj +69 0 obj +<< /S /GoTo /D (section.6.2) >> +endobj +72 0 obj +(2. FFT Image Denoising) +endobj +73 0 obj +<< /S /GoTo /D [74 0 R /Fit ] >> +endobj +76 0 obj << /Length 292 /Filter /FlateDecode >> @@ -101,24 +113,24 @@ \xEAT\x89H\x94\xA1\xA4\xA1\x8DJm\xB5\xFCz\xEC\x86VEb\xA8,\xD9:/\xDF\x99\xCAY0\xE0\x95Ҍ\x8C\x81`\x89X\xBB\xAD[e\xEC\xA1\xC2_\x8E\xD5(\x9F\x8BP\xE9\xB0B\xCD\xE4\xB9\xC9MS]M\x8Cch\xC1X\xAFY\xF3δR\xA0\x9D\xAF\x99G\xB5Ɋf\xF9\xC2gâ\xDD\xF5\xED\xE2CH\xE3\x89?\xB5}\x85Q|'\x90\xF7B"\x9F+c\xDBz~\x9B\xB6\xE5\xE6s\xE3J\xBC6SF\xD11\xA9P+:8\xF7q\xB4\x9C}f\x91\xACS<\xD0e |
From: <jd...@us...> - 2007-10-26 19:50:24
|
Revision: 4025 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4025&view=rev Author: jdh2358 Date: 2007-10-26 12:50:21 -0700 (Fri, 26 Oct 2007) Log Message: ----------- updated workbook Modified Paths: -------------- trunk/py4science/workbook/main.pdf Modified: trunk/py4science/workbook/main.pdf =================================================================== --- trunk/py4science/workbook/main.pdf 2007-10-26 19:48:03 UTC (rev 4024) +++ trunk/py4science/workbook/main.pdf 2007-10-26 19:50:21 UTC (rev 4025) @@ -141,12 +141,20 @@ /ProcSet [ /PDF ] >> endobj 84 0 obj << -/Length 163 +/Length 1246 /Filter /FlateDecode >> stream -x\xDAm\x8F\xBD\xC20\x84\xF7<\x85\xC7v\xA8\xB1\xE3$\x8EW 1gCL\xFCM\xC0 |
From: <jd...@us...> - 2007-10-26 19:48:15
|
Revision: 4024 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4024&view=rev Author: jdh2358 Date: 2007-10-26 12:48:03 -0700 (Fri, 26 Oct 2007) Log Message: ----------- updates to workbook Modified Paths: -------------- trunk/py4science/doc/linkfest trunk/py4science/examples/convolution_demo.py trunk/py4science/examples/fft_imdenoise.py trunk/py4science/examples/stock_records.py trunk/py4science/workbook/main.tex Added Paths: ----------- trunk/py4science/workbook/fft_imdenoise.tex trunk/py4science/workbook/fig/fft_imdenoise.eps trunk/py4science/workbook/fig/fft_imdenoise.png Modified: trunk/py4science/doc/linkfest =================================================================== --- trunk/py4science/doc/linkfest 2007-10-26 19:46:12 UTC (rev 4023) +++ trunk/py4science/doc/linkfest 2007-10-26 19:48:03 UTC (rev 4024) @@ -62,9 +62,9 @@ ipython: svn co http://ipython.scipy.org/svn/ipython/ipython/trunk ipython - matplotlib: svn co https://svn.sourceforge.net/svnroot/matplotlib/trunk/matplotlib matplotlib + matplotlib: svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/matplotlib - py4science: svn co https://svn.sourceforge.net/svnroot/matplotlib/trunk/py4science py4science + py4science: svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/py4science Important commands: Modified: trunk/py4science/examples/convolution_demo.py =================================================================== --- trunk/py4science/examples/convolution_demo.py 2007-10-26 19:46:12 UTC (rev 4023) +++ trunk/py4science/examples/convolution_demo.py 2007-10-26 19:48:03 UTC (rev 4024) @@ -71,4 +71,6 @@ ax2.plot(t, yi, label='fft') ax2.legend(loc='best') +fig.savefig('convolution_demo.png', dpi=150) +fig.savefig('convolution_demo.eps') show() Modified: trunk/py4science/examples/fft_imdenoise.py =================================================================== --- trunk/py4science/examples/fft_imdenoise.py 2007-10-26 19:46:12 UTC (rev 4023) +++ trunk/py4science/examples/fft_imdenoise.py 2007-10-26 19:48:03 UTC (rev 4024) @@ -73,4 +73,6 @@ P.title('Reconstructed Image') P.imshow(im_new, P.cm.gray) +P.savefig('fft_imdenoise.png', dpi=150) +P.savefig('fft_imdenoise.eps') P.show() Modified: trunk/py4science/examples/stock_records.py =================================================================== --- trunk/py4science/examples/stock_records.py 2007-10-26 19:46:12 UTC (rev 4023) +++ trunk/py4science/examples/stock_records.py 2007-10-26 19:48:03 UTC (rev 4024) @@ -37,7 +37,7 @@ r.sort() return r -tickers = 'INTC', 'MSFT', 'YHOO', 'GOOG', 'GE', 'WMT', 'AAPL' +tickers = 'SPY', 'QQQQ', 'INTC', 'MSFT', 'YHOO', 'GOOG', 'GE', 'WMT', 'AAPL' # we want to compute returns since 2003, so define the start date startdate = datetime.datetime(2003,1,1) Added: trunk/py4science/workbook/fft_imdenoise.tex =================================================================== --- trunk/py4science/workbook/fft_imdenoise.tex (rev 0) +++ trunk/py4science/workbook/fft_imdenoise.tex 2007-10-26 19:48:03 UTC (rev 4024) @@ -0,0 +1,47 @@ +Convolution of an input with with a linear filter in the termporal or +spatial domain is equivalent to multiplication by the fourier +transforms of the input and the filter in the spectral domain. This +provides a conceptually simple way to think about filtering: transform +your signal into the frequency domain, dampen the frequencies you are +not interested in by multiplying the frequency spectrum by the desired +weights, and then inverse transform the multiplies spectrum back into +the original domain. In the example below, we will simply set the +weights of the frequencies we are uninterested in (the high frequency +noise) to zero rather than dampening them with a smoothly varying +function. Although this is not usually the best thing to do, since +sharp edges in one domain usually introduce artifacts in another (eg +high frequency ``ringing''), it is easy to do and sometimes provides +satisfactory results. + +The image in the upper left panel of Figure~\ref{fig:fft_imdenoise} is +a grayscale photo of the moon landing. There is a banded pattern of +high frequency noise polluting the image. In the upper right panel we +see the 2D spatial frequency spectrum. The FFT output in +\texttt{scipy} is packed with the lower freqeuencies starting in the +upper left, and proceeding to higher frequencies as one moves to the +center of the spectrum (this is the most efficient way numerically to +fill the output of the FFT algorithm). Because the input signal is +real, the output spectrum is complex and symmetrical: the +transformation values beyond the midpoint of the frequency spectrum +(the Nyquist frequency) correspond to the values for negative +frequencies and are simply the mirror image of the positive +frequencies below the Nyquist (this is true for the 1D, 2D and ND FFTs +in \texttt{numpy}). + +In this exercise we will compute the 2D spatial frequency spectra of +the luminance image, zero out the high frequency components, and +inverse transform back into the time domain. We can plot the input +and output images with the \texttt{pylab.imshow} function, but the +images must first be scaled to be withing the 0..1 luminance range. +For best results, it helps to \textit{amplify} the image by some scale +factor, and then \textit{clip} it to set all values greater than one +to one. This serves to enhance contrast among the darker elements of +the image, so it is not completely dominated by the brighter segments + +\lstinputlisting[label=code:fft_imdenoise_skel,caption={IGNORED}]{skel/fft_imdenoise_skel.py} + +\begin{figure} +\begin{centering}\includegraphics[width=3in]{fig/fft_imdenoise}\par\end{centering} + +\caption{\label{fig:fft_imdenoise}High freqeuency noise filtering of a 2D image in the Fourier domain. The upper panels show the original image (left) and spectral power (right) and the lower panels show the same data with the high frequency power set to zero. Although the input and output images are grayscale, you can provide colormaps to \texttt{pylab.imshow} to plot them in psudo-color} +\end{figure} Added: trunk/py4science/workbook/fig/fft_imdenoise.eps =================================================================== --- trunk/py4science/workbook/fig/fft_imdenoise.eps (rev 0) +++ trunk/py4science/workbook/fig/fft_imdenoise.eps 2007-10-26 19:48:03 UTC (rev 4024) @@ -0,0 +1,9710 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Title: fft_imdenoise.eps +%%Creator: matplotlib version 0.90.1, http://matplotlib.sourceforge.net/ +%%CreationDate: Fri Oct 26 13:30:19 2007 +%%Orientation: portrait +%%BoundingBox: 11 173 600 618 +%%EndComments +%%BeginProlog +/mpldict 7 dict def +mpldict begin +/m { moveto } bind def +/l { lineto } bind def +/r { rlineto } bind def +/box { +m +1 index 0 r +0 exch r +neg 0 r +closepath +} bind def +/clipbox { +box +clip +newpath +} bind def +/ellipse { +newpath +matrix currentmatrix 7 1 roll +translate +scale +0 0 1 5 3 roll arc +setmatrix +closepath +} bind def +%!PS-Adobe-3.0 Resource-Font +%%Title: Bitstream Vera Sans +%%Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. +%%Creator: Converted from TrueType by PPR +25 dict begin +/_d{bind def}bind def +/_m{moveto}_d +/_l{lineto}_d +/_cl{closepath eofill}_d +/_c{curveto}_d +/_sc{7 -1 roll{setcachedevice}{pop pop pop pop pop pop}ifelse}_d +/_e{exec}_d +/FontName /BitstreamVeraSans-Roman def +/PaintType 0 def +/FontMatrix[.001 0 0 .001 0 0]def +/FontBBox[-182 -235 1287 928]def +/FontType 3 def +/Encoding StandardEncoding def +/FontInfo 10 dict dup begin +/FamilyName (Bitstream Vera Sans) def +/FullName (Bitstream Vera Sans) def +/Notice (Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.) def +/Weight (Roman) def +/Version (Release 1.10) def +/ItalicAngle 0.0 def +/isFixedPitch false def +/UnderlinePosition -213 def +/UnderlineThickness 143 def +end readonly def +/CharStrings 29 dict dup begin +/space{318 0 0 0 0 0 _sc +}_d +/zero{636 0 66 -13 570 742 _sc +318 664 _m +267 664 229 639 203 589 _c +177 539 165 464 165 364 _c +165 264 177 189 203 139 _c +229 89 267 64 318 64 _c +369 64 407 89 433 139 _c +458 189 471 264 471 364 _c +471 464 458 539 433 589 _c +407 639 369 664 318 664 _c +318 742 _m +399 742 461 709 505 645 _c +548 580 570 486 570 364 _c +570 241 548 147 505 83 _c +461 19 399 -13 318 -13 _c +236 -13 173 19 130 83 _c +87 147 66 241 66 364 _c +66 486 87 580 130 645 _c +173 709 236 742 318 742 _c +_cl}_d +/one{636 0 110 0 544 729 _sc +124 83 _m +285 83 _l +285 639 _l +110 604 _l +110 694 _l +284 729 _l +383 729 _l +383 83 _l +544 83 _l +544 0 _l +124 0 _l +124 83 _l +_cl}_d +/two{{636 0 73 0 536 742 _sc +192 83 _m +536 83 _l +536 0 _l +73 0 _l +73 83 _l +110 121 161 173 226 239 _c +290 304 331 346 348 365 _c +380 400 402 430 414 455 _c +426 479 433 504 433 528 _c +433 566 419 598 392 622 _c +365 646 330 659 286 659 _c +255 659 222 653 188 643 _c +154 632 117 616 78 594 _c +78 694 _l +118 710 155 722 189 730 _c +223 738 255 742 284 742 _c +359 742 419 723 464 685 _c +509 647 532 597 532 534 _c +532 504 526 475 515 449 _c +504 422 484 390 454 354 _c +446 344 420 317 376 272 _c +332 227 271 164 192 83 _c +_cl}_e}_d +/three{{636 0 76 -13 556 742 _sc +406 393 _m +453 383 490 362 516 330 _c +542 298 556 258 556 212 _c +556 140 531 84 482 45 _c +432 6 362 -13 271 -13 _c +240 -13 208 -10 176 -4 _c +144 1 110 10 76 22 _c +76 117 _l +103 101 133 89 166 81 _c +198 73 232 69 268 69 _c +330 69 377 81 409 105 _c +441 129 458 165 458 212 _c +458 254 443 288 413 312 _c +383 336 341 349 287 349 _c +202 349 _l +202 430 _l +291 430 _l +339 430 376 439 402 459 _c +428 478 441 506 441 543 _c +441 580 427 609 401 629 _c +374 649 336 659 287 659 _c +260 659 231 656 200 650 _c +169 644 135 635 98 623 _c +98 711 _l +135 721 170 729 203 734 _c +235 739 266 742 296 742 _c +}_e{370 742 429 725 473 691 _c +517 657 539 611 539 553 _c +539 513 527 479 504 451 _c +481 423 448 403 406 393 _c +_cl}_e}_d +/four{636 0 49 0 580 729 _sc +378 643 _m +129 254 _l +378 254 _l +378 643 _l +352 729 _m +476 729 _l +476 254 _l +580 254 _l +580 172 _l +476 172 _l +476 0 _l +378 0 _l +378 172 _l +49 172 _l +49 267 _l +352 729 _l +_cl}_d +/five{{636 0 77 -13 549 729 _sc +108 729 _m +495 729 _l +495 646 _l +198 646 _l +198 467 _l +212 472 227 476 241 478 _c +255 480 270 482 284 482 _c +365 482 429 459 477 415 _c +525 370 549 310 549 234 _c +549 155 524 94 475 51 _c +426 8 357 -13 269 -13 _c +238 -13 207 -10 175 -6 _c +143 -1 111 6 77 17 _c +77 116 _l +106 100 136 88 168 80 _c +199 72 232 69 267 69 _c +323 69 368 83 401 113 _c +433 143 450 183 450 234 _c +450 284 433 324 401 354 _c +368 384 323 399 267 399 _c +241 399 214 396 188 390 _c +162 384 135 375 108 363 _c +108 729 _l +_cl}_e}_d +/six{{636 0 70 -13 573 742 _sc +330 404 _m +286 404 251 388 225 358 _c +199 328 186 286 186 234 _c +186 181 199 139 225 109 _c +251 79 286 64 330 64 _c +374 64 409 79 435 109 _c +461 139 474 181 474 234 _c +474 286 461 328 435 358 _c +409 388 374 404 330 404 _c +526 713 _m +526 623 _l +501 635 476 644 451 650 _c +425 656 400 659 376 659 _c +310 659 260 637 226 593 _c +192 549 172 482 168 394 _c +187 422 211 444 240 459 _c +269 474 301 482 336 482 _c +409 482 467 459 509 415 _c +551 371 573 310 573 234 _c +573 159 550 99 506 54 _c +462 9 403 -13 330 -13 _c +246 -13 181 19 137 83 _c +92 147 70 241 70 364 _c +70 479 97 571 152 639 _c +206 707 280 742 372 742 _c +}_e{396 742 421 739 447 735 _c +472 730 498 723 526 713 _c +_cl}_e}_d +/F{575 0 98 0 517 729 _sc +98 729 _m +517 729 _l +517 646 _l +197 646 _l +197 431 _l +486 431 _l +486 348 _l +197 348 _l +197 0 _l +98 0 _l +98 729 _l +_cl}_d +/I{295 0 98 0 197 729 _sc +98 729 _m +197 729 _l +197 0 _l +98 0 _l +98 729 _l +_cl}_d +/O{787 0 56 -13 731 742 _sc +394 662 _m +322 662 265 635 223 582 _c +181 528 160 456 160 364 _c +160 272 181 199 223 146 _c +265 92 322 66 394 66 _c +465 66 522 92 564 146 _c +606 199 627 272 627 364 _c +627 456 606 528 564 582 _c +522 635 465 662 394 662 _c +394 742 _m +496 742 577 707 639 639 _c +700 571 731 479 731 364 _c +731 248 700 157 639 89 _c +577 21 496 -13 394 -13 _c +291 -13 209 21 148 89 _c +86 157 56 248 56 364 _c +56 479 86 571 148 639 _c +209 707 291 742 394 742 _c +_cl}_d +/R{{695 0 98 0 666 729 _sc +444 342 _m +465 334 486 319 506 296 _c +526 272 546 240 566 199 _c +666 0 _l +560 0 _l +467 187 _l +443 235 419 268 397 284 _c +374 300 343 308 304 308 _c +197 308 _l +197 0 _l +98 0 _l +98 729 _l +321 729 _l +404 729 466 711 507 677 _c +548 642 569 589 569 519 _c +569 473 558 434 537 404 _c +515 374 484 353 444 342 _c +197 648 _m +197 389 _l +321 389 _l +368 389 404 400 428 422 _c +452 444 465 476 465 519 _c +465 561 452 593 428 615 _c +404 637 368 648 321 648 _c +197 648 _l +_cl}_e}_d +/S{{635 0 66 -13 579 742 _sc +535 705 _m +535 609 _l +497 627 462 640 429 649 _c +395 657 363 662 333 662 _c +279 662 237 651 208 631 _c +179 610 165 580 165 542 _c +165 510 174 485 194 469 _c +213 452 250 439 304 429 _c +364 417 _l +437 403 491 378 526 343 _c +561 307 579 260 579 201 _c +579 130 555 77 508 41 _c +460 5 391 -13 300 -13 _c +265 -13 228 -9 189 -2 _c +150 5 110 16 69 32 _c +69 134 _l +109 111 148 94 186 83 _c +224 71 262 66 300 66 _c +356 66 399 77 430 99 _c +460 121 476 152 476 194 _c +476 230 465 258 443 278 _c +421 298 385 313 335 323 _c +275 335 _l +201 349 148 372 115 404 _c +82 435 66 478 66 534 _c +66 598 88 649 134 686 _c +179 723 242 742 322 742 _c +}_e{356 742 390 739 426 733 _c +461 727 497 717 535 705 _c +_cl}_e}_d +/a{{613 0 60 -13 522 560 _sc +343 275 _m +270 275 220 266 192 250 _c +164 233 150 205 150 165 _c +150 133 160 107 181 89 _c +202 70 231 61 267 61 _c +317 61 357 78 387 114 _c +417 149 432 196 432 255 _c +432 275 _l +343 275 _l +522 312 _m +522 0 _l +432 0 _l +432 83 _l +411 49 385 25 355 10 _c +325 -5 287 -13 243 -13 _c +187 -13 142 2 109 33 _c +76 64 60 106 60 159 _c +60 220 80 266 122 298 _c +163 329 224 345 306 345 _c +432 345 _l +432 354 _l +432 395 418 427 391 450 _c +364 472 326 484 277 484 _c +245 484 215 480 185 472 _c +155 464 127 453 100 439 _c +100 522 _l +}_e{132 534 164 544 195 550 _c +226 556 256 560 286 560 _c +365 560 424 539 463 498 _c +502 457 522 395 522 312 _c +_cl}_e}_d +/c{{550 0 55 -13 488 560 _sc +488 526 _m +488 442 _l +462 456 437 466 411 473 _c +385 480 360 484 334 484 _c +276 484 230 465 198 428 _c +166 391 150 339 150 273 _c +150 206 166 154 198 117 _c +230 80 276 62 334 62 _c +360 62 385 65 411 72 _c +437 79 462 90 488 104 _c +488 21 _l +462 9 436 0 410 -5 _c +383 -10 354 -13 324 -13 _c +242 -13 176 12 128 64 _c +79 115 55 185 55 273 _c +55 362 79 432 128 483 _c +177 534 244 560 330 560 _c +358 560 385 557 411 551 _c +437 545 463 537 488 526 _c +_cl}_e}_d +/d{{635 0 55 -13 544 760 _sc +454 464 _m +454 760 _l +544 760 _l +544 0 _l +454 0 _l +454 82 _l +435 49 411 25 382 10 _c +353 -5 319 -13 279 -13 _c +213 -13 159 13 117 65 _c +75 117 55 187 55 273 _c +55 359 75 428 117 481 _c +159 533 213 560 279 560 _c +319 560 353 552 382 536 _c +411 520 435 496 454 464 _c +148 273 _m +148 207 161 155 188 117 _c +215 79 253 61 301 61 _c +348 61 385 79 413 117 _c +440 155 454 207 454 273 _c +454 339 440 390 413 428 _c +385 466 348 485 301 485 _c +253 485 215 466 188 428 _c +161 390 148 339 148 273 _c +_cl}_e}_d +/e{{615 0 55 -13 562 560 _sc +562 296 _m +562 252 _l +149 252 _l +153 190 171 142 205 110 _c +238 78 284 62 344 62 _c +378 62 412 66 444 74 _c +476 82 509 95 541 113 _c +541 28 _l +509 14 476 3 442 -3 _c +408 -9 373 -13 339 -13 _c +251 -13 182 12 131 62 _c +80 112 55 181 55 268 _c +55 357 79 428 127 481 _c +175 533 241 560 323 560 _c +397 560 455 536 498 489 _c +540 441 562 377 562 296 _c +472 322 _m +471 371 457 410 431 440 _c +404 469 368 484 324 484 _c +274 484 234 469 204 441 _c +174 413 156 373 152 322 _c +472 322 _l +_cl}_e}_d +/f{352 0 23 0 371 760 _sc +371 760 _m +371 685 _l +285 685 _l +253 685 230 678 218 665 _c +205 652 199 629 199 595 _c +199 547 _l +347 547 _l +347 477 _l +199 477 _l +199 0 _l +109 0 _l +109 477 _l +23 477 _l +23 547 _l +109 547 _l +109 585 _l +109 645 123 690 151 718 _c +179 746 224 760 286 760 _c +371 760 _l +_cl}_d +/g{{635 0 55 -207 544 560 _sc +454 280 _m +454 344 440 395 414 431 _c +387 467 349 485 301 485 _c +253 485 215 467 188 431 _c +161 395 148 344 148 280 _c +148 215 161 165 188 129 _c +215 93 253 75 301 75 _c +349 75 387 93 414 129 _c +440 165 454 215 454 280 _c +544 68 _m +544 -24 523 -93 482 -139 _c +440 -184 377 -207 292 -207 _c +260 -207 231 -204 203 -200 _c +175 -195 147 -188 121 -178 _c +121 -91 _l +147 -105 173 -115 199 -122 _c +225 -129 251 -133 278 -133 _c +336 -133 380 -117 410 -87 _c +439 -56 454 -10 454 52 _c +454 96 _l +435 64 411 40 382 24 _c +353 8 319 0 279 0 _c +211 0 157 25 116 76 _c +75 127 55 195 55 280 _c +55 364 75 432 116 483 _c +157 534 211 560 279 560 _c +}_e{319 560 353 552 382 536 _c +411 520 435 496 454 464 _c +454 547 _l +544 547 _l +544 68 _l +_cl}_e}_d +/i{278 0 94 0 184 760 _sc +94 547 _m +184 547 _l +184 0 _l +94 0 _l +94 547 _l +94 760 _m +184 760 _l +184 646 _l +94 646 _l +94 760 _l +_cl}_d +/l{278 0 94 0 184 760 _sc +94 760 _m +184 760 _l +184 0 _l +94 0 _l +94 760 _l +_cl}_d +/m{{974 0 91 0 889 560 _sc +520 442 _m +542 482 569 511 600 531 _c +631 550 668 560 711 560 _c +767 560 811 540 842 500 _c +873 460 889 403 889 330 _c +889 0 _l +799 0 _l +799 327 _l +799 379 789 418 771 444 _c +752 469 724 482 686 482 _c +639 482 602 466 575 435 _c +548 404 535 362 535 309 _c +535 0 _l +445 0 _l +445 327 _l +445 379 435 418 417 444 _c +398 469 369 482 331 482 _c +285 482 248 466 221 435 _c +194 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +201 495 226 520 255 536 _c +283 552 317 560 357 560 _c +397 560 430 550 458 530 _c +486 510 506 480 520 442 _c +}_e{_cl}_e}_d +/n{634 0 91 0 549 560 _sc +549 330 _m +549 0 _l +459 0 _l +459 327 _l +459 379 448 417 428 443 _c +408 469 378 482 338 482 _c +289 482 251 466 223 435 _c +195 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +202 494 227 519 257 535 _c +286 551 320 560 358 560 _c +420 560 468 540 500 501 _c +532 462 549 405 549 330 _c +_cl}_d +/o{612 0 55 -13 557 560 _sc +306 484 _m +258 484 220 465 192 427 _c +164 389 150 338 150 273 _c +150 207 163 156 191 118 _c +219 80 257 62 306 62 _c +354 62 392 80 420 118 _c +448 156 462 207 462 273 _c +462 337 448 389 420 427 _c +392 465 354 484 306 484 _c +306 560 _m +384 560 445 534 490 484 _c +534 433 557 363 557 273 _c +557 183 534 113 490 63 _c +445 12 384 -13 306 -13 _c +227 -13 165 12 121 63 _c +77 113 55 183 55 273 _c +55 363 77 433 121 484 _c +165 534 227 560 306 560 _c +_cl}_d +/p{{635 0 91 -207 580 560 _sc +181 82 _m +181 -207 _l +91 -207 _l +91 547 _l +181 547 _l +181 464 _l +199 496 223 520 252 536 _c +281 552 316 560 356 560 _c +422 560 476 533 518 481 _c +559 428 580 359 580 273 _c +580 187 559 117 518 65 _c +476 13 422 -13 356 -13 _c +316 -13 281 -5 252 10 _c +223 25 199 49 181 82 _c +487 273 _m +487 339 473 390 446 428 _c +418 466 381 485 334 485 _c +286 485 249 466 222 428 _c +194 390 181 339 181 273 _c +181 207 194 155 222 117 _c +249 79 286 61 334 61 _c +381 61 418 79 446 117 _c +473 155 487 207 487 273 _c +_cl}_e}_d +/r{411 0 91 0 411 560 _sc +411 463 _m +401 469 390 473 378 476 _c +366 478 353 480 339 480 _c +288 480 249 463 222 430 _c +194 397 181 350 181 288 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +199 495 224 520 254 536 _c +284 552 321 560 365 560 _c +371 560 378 559 386 559 _c +393 558 401 557 411 555 _c +411 463 _l +_cl}_d +/s{{521 0 54 -13 472 560 _sc +443 531 _m +443 446 _l +417 458 391 468 364 475 _c +336 481 308 485 279 485 _c +234 485 200 478 178 464 _c +156 450 145 430 145 403 _c +145 382 153 366 169 354 _c +185 342 217 330 265 320 _c +296 313 _l +360 299 405 279 432 255 _c +458 230 472 195 472 151 _c +472 100 452 60 412 31 _c +372 1 316 -13 246 -13 _c +216 -13 186 -10 154 -5 _c +122 0 89 8 54 20 _c +54 113 _l +87 95 120 82 152 74 _c +184 65 216 61 248 61 _c +290 61 323 68 346 82 _c +368 96 380 117 380 144 _c +380 168 371 187 355 200 _c +339 213 303 226 247 238 _c +216 245 _l +160 257 119 275 95 299 _c +70 323 58 356 58 399 _c +58 450 76 490 112 518 _c +148 546 200 560 268 560 _c +}_e{301 560 332 557 362 552 _c +391 547 418 540 443 531 _c +_cl}_e}_d +/t{392 0 27 0 368 702 _sc +183 702 _m +183 547 _l +368 547 _l +368 477 _l +183 477 _l +183 180 _l +183 135 189 106 201 94 _c +213 81 238 75 276 75 _c +368 75 _l +368 0 _l +276 0 _l +206 0 158 13 132 39 _c +106 65 93 112 93 180 _c +93 477 _l +27 477 _l +27 547 _l +93 547 _l +93 702 _l +183 702 _l +_cl}_d +/u{634 0 85 -13 543 547 _sc +85 216 _m +85 547 _l +175 547 _l +175 219 _l +175 167 185 129 205 103 _c +225 77 255 64 296 64 _c +344 64 383 79 411 110 _c +439 141 453 183 453 237 _c +453 547 _l +543 547 _l +543 0 _l +453 0 _l +453 84 _l +431 50 405 26 377 10 _c +348 -5 315 -13 277 -13 _c +214 -13 166 6 134 45 _c +101 83 85 140 85 216 _c +_cl}_d +end readonly def + +/BuildGlyph + {exch begin + CharStrings exch + 2 copy known not{pop /.notdef}if + true 3 1 roll get exec + end}_d + +/BuildChar { + 1 index /Encoding get exch get + 1 index /BuildGlyph get exec +}_d + +FontName currentdict end definefont pop +%%EOF +end +%%EndProlog +mpldict begin +11.7 173.7 translate +588.6 444.6 0 0 clipbox +gsave +1.000 setgray +1.000 setlinewidth +0 setlinejoin +2 setlinecap +[] 0 setdash +0 0 m +0 444.6 l +588.6 444.6 l +588.6 0 l +closepath +gsave +fill +grestore +stroke +grestore +gsave +0.000 setgray +73.575 241.301 m +73.575 397.306 l +280.923 397.306 l +280.923 241.301 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +gsave +207.348 156.004 73.575 241.301 clipbox +73.575 241.301396104 translate +207.36 156.24 scale +/DataString 288 string def +288 217 8 [ 288 0 0 -217 0 217 ] +{ +currentfile DataString readhexstring pop +} bind image +579b5269825289595394527380529e62759753a06d6a98528c6d539652657f528a5d5597527f7e59a55f7b8c57a7656a8e528a63529252647e528d60609e538a +7a60ae5b828357a35c6a8652875752905269805294636a9e55947465a3568879569b5268815287575292527180529c637397539e6d6998528a6f539652647f52 +8a5d5598537e7e58a5607b8e57a5666a8f528a63529052647e528d605f9e53897b5faf5c828557a35d6a885288595290526881529363699e55937665a357877b +579c5269845287585294527182529c637399529d6f6899528a6f529652658052895f5398527d8157a5607b9057a5686a92528d655295526581528e635f9e5388 +7d5fb05d828857a55e6a88528859529252678152926369a055927664a557877e59ba6d69c32fbe8d33f71fbe9428dd4696a537c46f6ac44099ab38e33f82d51a +e84c73cb35ab8456c65f7bb428d37c51d513dd8140ef24be904bbc6a6dc04e98a730f03a84c01ff82e84c422e6517ab25a89aa48b4824bec0bc88835ee08d184 +43e326ad9758a58d51c6557ed902eb4679d902e2497cc525ce7369b26c71bb3ab69029fa1abe9323ed34a7983bd7577fb34d9ca240d9477ade11e74d71df24ba +7164d24a929f3fc9775ccf1fca8537f424be993eca5b7eb742a78e49db358db729ee2e84cd20e64f79bc4c979c49ba775ed408cb8641e306db8543ea28ba9355 +af7f58c35788c80eee447dcf0ef44081c726e76674b1697ab743b29035fc14c09329fe22b98f3fe34294a5569d9c48d35179ed0be74b71ea14ca5e6fcc31ad8c +00c0007c1d1966005512453387005b3d0bb302b00d0da100b1133b3e19522636146f049a0e258103d400664300be1d6f172b342d4034440aa1007d1a05c300a3 +032b8f1a8230441f3b335e210d7a00ad04497105ae0067281884494b2c3b1a6a24762800a5009f021089068a003550424f5a2b1a671a9e083d6c00bc01773312 +7e005b113b4b741449450da10baf1806a300bb0a2c531267123822631a8c171d7f08de005c5000c50d7614224b104a1f4a1a9d006a2f06c600a7061d9c099821 +44282342452d087b00a509328302c0006936029d355c2034245030553400a500900b00a3029700306d316645381a56268111277700b601654f0c960060182f65 +622f3e46148c169e2102a500af031f6b0b790136355531761f19770ec1004d60380a65006f173b510099007112047b186b0247283a3b3a40007b02790b146f00 +8f005538225d1455064a2d6613255d00930676290a81007902354632430b4f1167197b1f028400a7003e4d00860462143f232c3a0a5d119500474500a9018208 +1d5d006a0e4f18521a323d0588008c04207c00a20457270c6b2748035c005b21285e00a000662200930e77013b37284b284c0173086216028200900043501676 +0d5b0c373d5121166500850d573e048f007500205c2557044e1a5128562e00830093002b5b008a005e22323d204604571b8101355100a2027f16136f00760646 +2b43261d490a7d06880e108300af024c37027e1456084f0a462d186306a300583400ae087e022e4a14591a5109660e4b2b0290008d0031690b8a085b1720513f +00be0063020a46003d022b186f001d1600b3019200007100ba03191404201a1d016b046300035c00d400321100af0b6000120b242710210396004c0400c40094 +00083d17860b200223115216006d0099001a2f01a00049000d672841031d0160103b0e009c008c00036f006f0018163e4e1b0b00550699060d4100b800510d06 +630044002629560e0e1a009e048300008500c701122b00350a1f0660184300006501df00211a00c00465000e240c32062b088800330d00c80097000057069e06 +1b060917351a00740081000d4b00b8003e0800851950001703461a1d1a009f006b01009800840011232b67131a00420b7b0d025a00ac00331a037f0049001d44 +412608210085096404009400ae0006480052011b0c522d2603006303c000182c350d3503620d282901a30062110a810d630a231a413a34230565067d08126700 +94002921146810300d3d266a141a36019505671a06810077061d431a3610270d71176b140b7102b90122350383033f11272e1b1d0e4c0aa200282501b7017d0d +1451006a0a28162f122f200690008a08166800b505361a0c62233f0c35054b121a3f01ae00511801a0096f0820222b4a1b2603580960120b8200950024420d82 +0c37102f3651251336017e0849220492006c0a165e144b0c28135e26501a066d039d001a4a008c003416204716240d4a148901203001aa0176120c6a00750524 +2722181d250986067f0d107100c5032823067513420d31113417144a04b3003f1d01c00577091a341658102808450d481a06980090021b5b0699083a141a493b +01fc00ca7336b03597667c4fd206af7730db04ee3b43f200e82c7b95499d64735cb906e82274cd0bf411af9305f430ae665f8a606f828717fa00d45e18fa0ddb +355adf29a55e75796f6b964466d000f60898be0edd1db17f27b46f6f7d6f609741c0651bf600f23040d921c63b6c9669639d4d6a9e41cb0d8ebc00fc00c58628 +c02ca56a6a6fb323a17b3dc816f84733f200fe1a6da93bad4c7a64a223dd336ac619fc0ca5a104fe17c0674e9a48816f8629f800be6c1ff206e3334bec0dc447 +7a825a80805e5ace00ef1083cb05e818b18900cf518c6c69718056a07c13f800e9481fe918cf3860b64e7f8063718a52b41f7fc600fb03b0a01dcd25a974508f +9545977a4bb428ee5525f400fa205cc52fba3e77748a3fc13f63b429e70599ad349644568a1f8a5725ba1d8e7503b1416a7f16a5474ca21b747a30b110579b1a +ae3647a22477732f9c336f8c14ae5245a31f9b4e1fb120897321964b409b287b7630c9165d9229c72156950da3384b8e355e8021885250bb06a26329be249653 +20b2137776307f5b259b295b9a1dbc2c50a714b1484f9903935a3d8f4353861d865d2bc317926f0abe3b7b6f1ab733599228796f2ca71a52a11db03548b02087 +6a3ba7207b7d23a34d4c981d8f511db321897910a0475190218e623bb71268882dbe0d569a12a7364a952d677c238f485ea701a55e35b2209a501fb01a82732c +875527992f638e21c32551a020c436519708a34b478a3d52831f845c3bc910976a17ce3386601db8236784307a6828a12352aa1fb33447b21a995b43a10c856f +3b1b5f00571f485f026000671712511a57195c40242d4f510a6306500d1d5f0060006040223f1760264a3244133f6200630a5f3a11600062043f3738441f5f25 +4514712f1366005e0349550560055c1a3b1d334b215b1759005c52016702601d2b5f0050185a1a5925314c105a006a0e3368005b0a60421b56224a1157004e2c +36600160006929015e115c17504d17363a5d04620d46250b60006300565b174b1260303e3e3b282d62005f12584c08600064022c43294e1a6030361f66420c64 +015900355b0060006028302e245b2053224f004f5d00640260291d63005c0d50274d342c571751066d1b2267005f06594e0d601653124b084238285f0a600065 +3e0168096016405a0c4228600a60183b38086000660544680c530d60362f483500a3016a06182f0056043e1b6a002428068f0198040077009006331d022d1a35 +066d0462000a6601a9004b1a00a70d5c0d30051d350d44038a004d0d03a2009002174a146a0d3f102d0c5120017c0085002837018100670d0e672c331345064b +19421d0099007e01066b0071003b143a431f23105d0083080957009b005e040d4a0062062c2f560c1a3a067b058803008a009c041f3000440b410a60174b040c +7101b300342700aa05680a25160a4503470b8300341604a30199030664067c0a3d12101a3529047d00770014530095005c1100851d42103d0436262535009400 +6a05008a0080002b2d28550e35104a016f12026a009200451a066500680b2147421d174406650d6a0800970090011149005c00440d502b34120d6f009e001841 +3b2844146f092c2104c0046a20068f1068220c2b4e412d131f710b930a1a7901ac0d202f14771d1b2b3a1d7417303110a704671d0a8a04901d1b4c193529141f +87175d0b1a7e06dd051d4102940d46272e3b2710264b0dbb0233200ad002871b0d4f03811f20232b113f1619b100900c1a6400d30e232c045f2344264116560a +283502cd044f2003b40c771f0d323456271720600d760e199a01aa0d1a350c9619292f282957272d3f128f06411f08a70481201468144c2812246f293b0b1b7e +08bb041b5902a30d372923552310284a149b012f250dc4017e1b0c65038f1d21321d14331a1aa3067c0c1a7703e80b1d2f047b1447263a203f0d274906d4033f +2106d908801d0d3b1b6a251620460e5a1318bb01a30d194b05b2142b2d14423f00fe00d70d3b7101af058a34cf00466f02d903f4020cdd00e6027b3a297b327b +04c606be0d18cb01f4019c3800f41dae0468142b73309508fc00a52301f700e502449029a31a8a0b693d7b4104f200eb0065920acf01c6081aae585e06900476 +3b845a00fc00df0510b501c902843b6a644e5b05a714bc0e28b100fe00c730289301c5056f55a7131d8503c010ee0c02f200fe01605e169a168e08a9239c2405 +d101fc007b6000ff0dc80452411090169918fa00774c01f400ed0224b80dc00b8a1a47585f5504ea00d9003bb602e301b51200d03b850583055055587f00fc00 +c91000d401d90269604f80327a058f25a02506d300f8009d5c18b201c805467a822f089203a321c32d01fc00f400358905b503921d8f3f763d04c006df00568a +8051d912c03da3c00bde05e15527b33db53da58453679d9b26de17be2050d503de0dc59a4e8a4fba52946f942885d50cd614db7922de03de24857e778a57b74c +9a2ee15d3ade06d90899bc0dde17cb58874e828d51be35cc02bcac09de05d54359d200b83eb84ac051869726cc00de246adf00cc1dc78735c6499e46c618af52 +7fd509de05e17404c928c13593a335807ab220de25af4f2fdb03de0ca5c833a33ec162798f7c5369dd0dcf24cc9f16de04df365e955ca149b5647d47cb7a2bde +0dce0177ca03de0dd6716d6a69aa4cad4db401a0c40add06d95b37de00d32ba7609f6b71ac35b80de13f51de03d914b4a120de34b648ac2c9a6b64cc1ade04d3 +9006dd18cc357ac31d985bbc2cdb379e761dde02de1288e21ab82ec66f59a5682ca04f4c44176043355121666b0b4c2040933b981b268c35905118560935601a +515247811a315e42af3451360ca755494d1351432c5b1d52742e662930a340853611872f6f51144f133b7d14515a4989312d58318a444d4a0b8a5c3051174d58 +2c79014383407e431b7c34624a0e60365967024a40469b144850379748453d1d6c4c3a511f71670c4c22457e3599132e8a3e9550125f193b571a514a4a7f123a +5c44c0284e3e1ba7514b49135a3f30512159711f572037a53f8e2c1a8e2f7b51195000386f17515b4c862826603b9b3d504101975a3b4f124f50296a134c7f3a +7437248f3b7143067133605c0b4f2e408c13505941923e3749267b494351187d631b5021496b328f0a368c428a4e176b284a511a52414e7a09425346b11d484d +04800077262741006a3058256c0053481971027f13177a0074145042234d28502365036a103276037d0a5e45037b135f2c431f1746355d148100681f0b7d007b +203565165228573f45283e271980007f014d59066d0675320e5b343a3a5b1b4424533e11800075030d6402712555443532403f3b600e5f092c6f03800075311a +5100753146325f0a49531b670a801d108100800c404b165c255a2b57125c1d2e710680064d510481096a2435290655305e1980006035127c007d1a236f06601f +573d3337333a1d790077063b6b02760b6b3b0069234d35531d313341511180006f0a006d00772446512840364f41551a50161a7c008000624211600175342f46 +4c1f475d1d5914712d1080007d052b570b68255c3649204e2d326a0971043f6327452d27500527051a9210512f027d0e4b3f013d3b2f37053f521077051d560d +7f250d350b6028114a242163104425227f084f0e14691365370d4e091d470838641357092f640db00e1436096b282c3d1d3727013d2e209605351816ac0a6623 +0c4109583a0d3a100146082e7e0a77171d5501a51f1938024a322d432d2640042f1a1a9d0d40270597105737043d283b370643420d6305226b0e812209310575 +281d4e1928501a472c2467063406177c135d3509600d3348063b531f3f03366210960618430b7728203814472902432f217f00361d1b9e09601a0e5110623a10 +400601430933770a6a11256206bb191233055c2b2e412628330235291da50b35210db70e602f083b17473a0a3e2808520628860d801d1244028a261f450a3a41 +0bed0d96181d5612741d4a2b9904313013c606c40d0d9a08db143e35063b35461b9c128406148a0be90c5a2004de18851a3821354b1d5218ce0966180dee0ac8 +14134e22a0184c1d2e10742d1bae0ebe0b355109b310831d14833d501d511a6c24561714d40bc011119a0a9b1a431d57661a1d1a7a0ebc0d1b6d0de30d851712 +6c12831d3d417714244614a90cac0a0eb40af014244e095d254d1d8c285e0516960cf809382f06f410921929361d5e1d581bbe064a2210e808cc1109740eba16 +4d23052453381bb30ea709167409ce0e741a00ac286a1b481a5535343e17d70b97130bc80bb2182b28407f1a3b1d5a10a11a1b900dd50d60270b8e12881f2f5e +5c2d1f55179014850613cb0be1131b6f0a7d1d511d77423a0919950dde06234a8f14ea00d3489ce205ee00ee3025b93ed102d960526f90c401ee0cc3213fdd00 +ee00ec8c538e32ed06b06d9d2857ee01ee16e97725ee00ee03967d869f14e826a731ea6a10ee00e800aaae05ee09df31903b74b21adb28db00b0be00ee03ed1a +60d000c521d93bdb5364b608dd00ee1f5eee00dd06ee5f3fd447b103d500b96666ec01ee00e75f00d426df02b987388963dd02ee1daa530ce900ee00c0c738ae +1fee169097845d30ee00e328d1ad13ee00ee01669762bb03e93d834ccc9a01ee00d9017ac700ee00eb57766551d609cb45c00187de00ee05ee4344e900e20ebe +59b77943d214c80eee3e32ee00e902d58d1dee2dcc14b70e9c883ee810ee00d29000ed14e90296b11fa341ec16ee358d8803ee00ee0893ee1dc710ee366cb26a +0dd510b735407a16a236854fb20168771dbc04db1428d203bb227d5e337d507b319614bc2238c109d30da25906d52d94316a3d2e6a568f2bca049e380dd106cd +2253a723893b8a4169487c3b2ebe13d30d6d9910b714bc3814a75e593b90286d37985d21cc0abe1b13a506b42c846053566963369b24a70d4cad10d310b74e2d +9017b73769679e0e4d8921a911e1241dd606cc1f63761f923d8a358228a9352cba0dd90989750ad91ba72d56581d83439336cc038a5c14cf05d41d3ac00c9f2d +8a494d5f6a5930b312ca144fb608c613b43d00bb467736842b504d757d24cb08b22506bb08c1286f80406b517c3d873496222bbc12d41098711da518bc3a4789 +832f4095259021cb3e1dd10ac81a428e11a3318f486f3b8e4b2eae17c5046d961f711f626920521d4b9440515f0b963d4963026a47426d03674c3f8d274d643b +835b086c1b74600c6d24557e0d6b275188336a30357b445571097d30246f0865603784134b673daf3834532577651d711a605c086431559d19523435ab3a6b47 +206c355171086d23236f145d7938892f2d6f2ba54c255b06676421711d5f60165928519e364b5216a740585b0b6f3f456f04713b38821f55713f874d0e682183 +5b1a6f1857741671245b79295725408645516f0a8637316b0567563b7406595f409e303f5b327d65146f1a676203692e568f065c2b439d366f3d296f3f55710a +7427146b0e60713587233a7135b6442853136f6221711d5c5d105f3253a52c4d4725bc406252146f3b4c71026f2e31791a59813f88401b6d26925522670a5f6d +1d59183438062b0d276b184335015c0c354b00452b244f03553b115800124a1760360b3b0a402e08581b2f480c4e192f6210401018511a4948064809165b0249 +4a0d580b3d45167d0d02380d523d1d4613281a004326306c063b171f7b184b280b4604434a044d14024700365f14561d23420577291146033a382055192d2203 +271a2c74143f28086c14404002451d2f4b045e30094c001f561760310a3f0653330e5e132e3e14571a32510b30051f5e1a4642054d08255903473d1852034844 +176a000940135b3e163d102c27004d25305b003b17277314481d114b12494c064a0d014e0040580d58162f4510861f083f08463d21501825190034252f79103d +1f11821a463505470e384a0155240648002b65195e2814450366321252082e3f1a852d31280c4727102f0e324608280d2584216811164f1f7d2f052806103602 +2f3a2842101d3425a21d181f09802b382d0430310b2f002f571a36191d8a2460200a2e1d602f062e111f55062f3529641b101a1b79271d2b06582e292f032c51 +113500276025562711571d3d2b002f27442e012c31287d0b291a217c29202410522b122f113b3d0b290828761d5e0b1a5923802e0833101631002f352e300a22 +3b27ae181d1a11872c352b063a270d2f062f50132d13219224641a0e421a6d2f032b001846052f3d2b56171629218a231a26006929322e012e430b2e002c5f21 +4621166f225027032f23502f062e2624680a2f302574240a201664291a2f104a36192f082969184d062060266d2d0c4518242f002f30362f05273d2899122319 +6f02d000b52b74a300fc00ef0c08c62bac0089455876737c01e200c01614e100fe00aa6a467c1ba7008258a92638bc00df0aeb430de500fe015f84606a069c16 +9a33d92d00ed00f200719301fe06c61b82354a710ac01fe900858300f703e70034b300d2189c30a724557301e100fe002cea00df00ac3b05d5469900bb00993f +47c001fe00d33500e219c40071663d924d9501d600a22800f200fe00809f2da10cb4005b7a8d4217cb00ce16ac7304f400fc0031a1468d009d297d51a75100ea +00df0148c100fe00c13d6951318d00a735ce0160a300ee02f2191dcf00ee088851863f288f08c40dfc100cf200f400956300fe26bb06a310765726d00cfe01b2 +5f00fc0dd500528d21ae30a211c80e865100fe00fe0059ce16c004b91a31a57100e800d235599308bb13a746be0a7ba505d904e32035e100d613ae595eaa33a3 +13b505df3a47d604ed00ce7300e12bb80d9a4e4c874cc40cdf01b55e01e503df007ec5259838ba149b606f5a14d500e31197c514d500d42b43a36a8224c11f95 +4dac9000e100d90940b519db00b8675e5c7a9508c12db41062ca00e700d55d40ac00cf069066a5325aba0ac916e34319e101e608947743c519b8279920cc5328 +d50cee00b09800e913c61a776c269d2dbb22de009d8303e700e2055ce10cb824be2e8081568106ce00e1216dd706e300d54d14be4e9e16b73076697bb200e100 +cb300dcc0cdd00a090467559aa08b342952737d300e605cb8a29c400d11271818d5c3ec613b62dd56a0ae200e30271962fd601c4417e3aa97514cf19d60090b8 +514c712b8d125f5a14e90da13b11be1a7f432f4e605b5d263ea216c01b34aa0adf1f5751288a354e514b409d21556721c108a53319c30ebe3b307935404f433e +9f24a01435b20def133b710dc9236c484d56432e48711deb045d4514eb03bc35198810a93d454c621f6a3633d601c91a2fa301d91d5b520c97435f486a2d6d17 +486f12f40b8a3a0de3149b3e26564773483d409019a22631cb06de1d3e711aa22e5b5635577d36517125ab0b7f3a16d60eb33d249627584a3f44833b7e1238b1 +11db1236890cd5216a4c3e6c3e384b6228c70156571adb02b63419a510bc3b3b5e4e225a3b35c00ab91931af06f0194b5e0db532684760375a24487a16fc0973 +3f10fe0db23b1d652d8d434a427d1b873031ed06d71f2b920db92660511d76630ba5004b3a005916224b182d60005618249a01891d1b6f0098200e4e001d4014 +414b046705315206b910383e069e134a4508442817470e2377005c170da9057b2d0d5f1371331457141f5e0d4047058502223a008a173b510a652e3356133b53 +0d5601237e0077140175035a360a502f4447024f3e1a90033f370b9c014036006718284e183a510d59182c850583141f77009e1a0b55002d3a13454616590538 +560dca0c363709a70a4e41054b1a194714257100561718af03832714690684291450001f4e11404d017704274c009f163b4a007f213f4f0d3f3f124a05227d00 +6918008c056a34055724583f0a582e1d770641400992002c3500771a3452144b411d621a337108730c227f008f17086401433b114a3f285104435114b2053b3b +1d1a3d002f0d2731003f003f0402310c301b2d23161d28280d3f002f06043a003f00341a141f053328261729092437003a033d1a063b003f031f211a20183219 +270d3f110e3f003b042033013f02370c260d13241d340b3a003226013e003b13122d00340d300c300c16240e37003f01173f0037083328053714281035002814 +2037013f003d0d023706351d25280e241f2f063d00270d033b003f0029280d2802352d1b2023101a3e0035063124023f003f00112813281d321d1f14341b0d3f +0036001436003f003a111f140b2d222f0e33002b30003d013d170c35003b0629162714172d1332043f08123f003d062c2e003f0c320b2f041d1a1d38063f003a +19023f03381a1a2b082b1733043a051d180a3f003f0021360631063729112d204e6f4a11770631130d8d0c500d0181144514013e383351020e460d73060c5b0c +7b0c02420d5a190b21223a6a0d37180d7f0b600a0a770d5111004c181b1704285c1d80030a5b0da30c133a066d13181a0e2d1f01142d2193053d2109a10e6612 +06630b4e2000261b04310218740d82060d660b9b112129015e3220100b0e44051f2410950a49140398145214024d293b3e020e370b5a050e6a0d800a095a0d6f +16162818455916280d0d6a0947050b820d500e0263182f1704324d276a010c530d8d090a4b09750d0d2b10401d001a2c2b82023b210b950d6910086c0d511700 +351b0124011f6c1283050d650cac0e1d320469231f0e0e183303172f179e08441f06b3125d14035a1b452f001729084703137b0d83080d6a0d83131d290a5249 +4efe20efcb98d75acb60944ec918a1872cdd04e7414ce800e328898d57a35e8953c106e53275cd0af411ba9308e82eb15e7484687a7c9a17ee05d06821f20edf +306ad928a7588c6d816b905760e700ee119dc012de1dbc763ea76c7b71875a9e45be771fee00e9374ece26cf35848d646297665faa3fc70e8ac800f203d38331 +be2fbc608367ac36978f37cd17e8523beb00f61d7fa745b54a905da521d64767c519fa0baaa204f417c163629650906a9e28eb0dc07b1bef06e2375be20dc442 +907a6b857a7355df00eb1b87d506e917bc8416c3519564816b875d9a8d12ef00df512edf1ad73477ae4a82797c659952b03377d700f208baa023cf28be6b6983 +90588c9346bb2bdd662dee00f2266cb936c53b906f883bbe5860bb28e3059db69763e92ce548c4d505ff00ff5521ca2f9f12534f59666a4c00bc02bc0d0ec600 +ee00755f357b1d6f0d5e4fa7223b8600cf05c13004d500db0235714b4c11621d9b29c11004cd00f001517c00e1068e1b5f3540460d901dea00746000ef02d106 +16a200bc1866297f0e4e4706dd00e6001ac500d9057b3b04b33d7108860085253e8e01f800ab2800e214aa063f633d82495d01ab059f1a04e100f200588c2299 +107c133b6a843a219000bc0c905702e600d4042196376d095f2e7e45942201c800dd0033a000e90088374d552d570a7f31ce01577700e301d2110abe00d40b56 +4767212d5c10c00cdb060ccf00f2036b5900d522820976106735239b0cfc00934800fe0bc0062e84219d306a0e9c0a7a2e03fb00ef003ab112b70980231b8a67 +18f401c86a63a33eb155974ab735887922d703c12d34a100bb13494428522d471f8a048813358605d704604600b6187d253b3f3d41375108b1007e3006c905a5 +10346f1b882b4b2e4b36622b289800b205506408b2066f341d773e553148287724603b02b400a71121900e8a0e44444a4f4c3425731fa108436f00c4007d3f19 +830e6b264c3f7419484b17ab0ca22414a500cd0a405a20661b4b257719731f2c860bdf03575100c50b88282f5224512c5614a900683d0ccd02a712298409a21f +4b353543493b209b00a10b417703c4066a3d0294296a2843315f304b4900b60095220da90b99113d5835673b432964288314358200be016050119a0c712d3b58 +5d35404e1d98168e300bb100be0634741879114d3165306029278113c4014e60471468009e18746f00cf00a92006b7257f112d474f5763310290008503005f00 +860020120e53002500281a640e012c007f005502006c0060000d3a0e1f011a0060135e00006700a5000d1a00730328001b240112003a0697001b1300a3007100 +033f005c001b1020001d0e0080007d00005d009b00260500511f2800280035060826009b003b02009601600010102740131a004300510600730088001230096b +002d001a294d1a0030006a00330e007f00590008560935011b00512141040062008a000435007c0027031637001900370d820006230095006900005700630014 +2018010d170075057100006600ad00190c0064102800240a1b0c003601a3002f0600b2006a000a26144f061d043200370b008c008700084c0482002e010a3d37 +01a5006a35146b0d3a323334711063311b9f0293211f8d019e22306a185d3b252c5104820d1d4c0293002c1600510a2202190d1a140b1d032c001d100059014b +001437083b0a1d0421102c0e0421003f03181d04530029060c3b17210620053a0c281800350032020b33053b001f1410251a1902320651021025004d001f0e0a +350020021720240d0d1d0253044b0c053e00490118140b25061b06160c2e0d06330275001b1a005904200514180c17061d092c0019160160004e02103d034305 +1f0814141f14011d00370612200160002b0c05491225041d082d10171d003100260904440243001a260d2f111a022c0b41060a250047011d160644002604122d +1f18091f034b063f12023d00400013230830001d0a13172714043504670016257af880b7d460f0be90ee74d1de51e37b9fde4ae68d8ae160eab577ef79cdf07f +eeb5aef86fbcc668f6669dbc41f8775caf0c9b5d22ae197583169f4a3fb4148a6f23d018718d19cb16579b06a54538a228688610a34837bc09a35731cd08906b +1fb30a6c881a935829a91d6c9002bc3355a702bc4044af039a5c32a52b5b900e99561abe1688730ccc286f8d0dbb30559b0e966728ab1d5d9805ad423db51797 +6621ce1d747f1fbb3351a30d9b5824b1177b860aa9424baf0c965f35bc0880801fbe0e5b9703a34535a225737d0baf3e4baa01ae4d3dbe049b6522b11073851a +95552bac1b76860bc7295f9d0dce2f4da506a55135a12b5b8a119b5126c812946a1ddf1d7f8117c02162951993622ba92263a105b53f46b80da75832c00c876f +93bbb284e15fe3d26dff5ff0b757e876b7a573c0878dcc7fb2d758ed66a7f855ff83cde27fcca7a3ba959bc643cbbe7ae335fb8033d113a567279f504c8a376c +8728d5145ab214ea145b9808ca3762804369732b816932db06996225eb05b65822b70e956a3f7d6f28983457b501dd284abe01d9325f9003ae5a4d81564b971d +847317e111a06209e624926c22a03d6f8434738c25b32850c004d5334eb11da7514c9e2777902c925f40bb0da3601fd114a76a1ab44363862d77713fb91462a7 +1ad71252a306cc355e853879692f875c43c60190652fdd03be5321c013a3683788632d90385ea30cdb214ebe0aed245e9206c54a5a7f505388257c7521eb0d9c +6316fe17a36523b229817740758228a73151cb04db3149c010bc4557960d927706c90198604ba7377d4d7f40a236907a1ac304c5535bba01bb23755e5b84426c +3f9406bc4875aa0adf09948a2cc4279744674f514b33710c8a057551149d058f00497f166a2469105f374c350e71008d0c596d0d94007a1a296c3e5214711469 +2c6957018500820829711185006d40353f4b5a067a1a81093a730095016f36267103710852416024346c068e0d932b1188009305594529740e671652167d351a +8108af00685b009e0c6f1349441b551a69168000574f02a00194063a8a067c146f1b4e4b374a066b008816417604a0007a2d128030620d6b1f52384a69008400 +75210d85098a00605c285035630871276a1a24760092056c50198100760d4253523e22710d811a86420888008d01465a1d7c006d27452869480e820e9d00516b +6314ae00a725779c01e300c42612b52c9900645e5265716500c803ab1216c000d7008569418429941a755f9f2058ac00d40dc83306ab00ab00316f5a69248e26 +8c279e13009f00c500243800a5035d00402b0a2c00660abb00323000c500a3000c5d00900042174b002b2700a700ad00038400b5004d0d0077284a005a015013 +175800c4006a0600b7058200281d31621a3e0075006a1100ab00bc002f47147c005700233e652b0063008c02532800a90094001371184d004200643058130094 +00ab00095d00b001580c3243003a005e16a301164700b7009900037b00a000352c380514370095089800009500cb003b1d0096145600500d311f046402ca0050 +1700d20093001a3b1a770b470664004e1a00be01bc00176d0a950058030d574a06f2009d1f2c64147b1a5a2f9f113e4d10d202c5141a9600e30e4b331b4c2e48 +168a047e141d8403ef0674310de31a961d41293f51273b039400461808c506c114237920a71337112b134c120c55007a011a2203900135110d4e1a3d10190c60 +0c231400810074040a600559041817324019120c4a0a8403142e009b003b140859032c0b261d44101719069304660b056a00a70314270a2d09190b52132b090d +5204ca011d1a009e04570c0e2711210d200671002c1403b10179050d3a05880a191111172c160963006403163201a7012b14016a0d4a0c170e47101919008300 +5b0a0280036904141d2456141a0d3d0d66091145009300211a067302350d1f333125141a0980084a10027b00930111410841041a104726210d0c5506ac001a24 +7542c102be308da703fc01fc510ecc43b6318364587589670edd0eca1443eb01fc0196773b813d9b3b826fa72681b903e113f86717f701fc0934743d411a7c33 +9935f8462be802f4068fbe00fc08791046342028016c14e800513e01e900b901008100a10d3e215e00342401d100c800019e00d3015520009633560263016a11 +266801f000860900df0c980219463b713538028a00860e00c500db01356c19900155022b537631096a01a701713300d500ac011484245102381a7d3a790201af +00d500117d01d10164223b501233015e25c601385301d700b10100a200b605303a49011b3504be0ab80001ad00ee00463a00b21b5e015c104b1a0d7308f8006d +2700fc05ae010d64208822450d79005f1701e600d6011a900cad015c0b11715849cd2cc8c888d78ac0d5b6a3b55ef4ca84c614ce96a9d913c48cc6ce95c6aeb7 +cbb752d671adc025cd42d7eb5ec959bbd4bcf2a998d9c98fcd3ee19f46cd30cd7aa3e846a7b0bee3b9a1b98acece56ce51c4c51db92ca3923894646a9b7e7188 +41b96f3bcd06cc414bbb27b45b7ba057559f5e859444a70d95b90ecd12bc882ea738a586756a9732b4834eab14cb594ccd04cd3375ac42a566847d901dca457e +ad22cc12a3a70dcd25aa795c964a82888e42cc11c17127c70cc14e5dd40ba359849a657c7d6875c30dcd238cbe09c126a99d16a751818977807653a38234cd06 +ca512bc01dba566dba406c8a719087509a2f8ac10ecd16af9c21b235a9975e7b814eb4875f9d27c66544cd06cd3565b336af63858c7533be527ea333bc08a1b2 +2eaf3e779f4cab695ab460978f23cf8262980eb16476b1148a7168933f7e7d528f553db843888e2ea32e9db828c0637b9f5dc97646c3627f8a27b3772c922193 +5362d12371a06ab96a95ba4fc3674aa54890af35a34b7b8d2e7445447f60554a268a46366f006d1b1a6a086a535682283176456b5c2967086675196a0d60561d +5e1d626a41605612865b3a600a9435358603622d436f1b595756664214902c5669137d117677107d165855365f144a6b584960037f48206f0480353fa1064e49 +5871383e5a3a555d107b1a5573026d207774057736456a555937317c513b6a017427016d056f4d4e901f3a684e77533162125d6f186912635d13622468713365 +51268c60455814983b357c016824326f1365595b7336218d375d651f7406747b6b5c9019963b85900598009f461d8e31953f9071484790902797117d25429200 +95039285336d409243765d742f839a149d139e7524a300942c716060774c90436c1fa75c32a1049d067e870c9d0a8d505930667a3d8a2e9c01a59d11a705985a +6aab007f33904486627b841d8a00900c2890008303813414822b62087f006032368901900086260181117f0e5e47235335750290045e1f028c00900062652060 +068318485051281490008112755606900090002d5c31620d7a22482f6c47069000810035750090008d27482f206f126f2376014777008f028f1f1d800089066a +356036206d0b750990181690008d046c4b02901975086c094d4524870890007a44019008870d475c1363237e0b8d114b3f05900090004887107103871d2d6c43 +0df60bb22823651d7e32633baf004c501ac902d91314c502d5205946115c3e4829ab13a10624a304e60a663505ee1b922d42313b5e487926ed09962e13ed05cf +1a1d6f239b21522f221276281db90dca021a5808ac129434169c574f36732c7733844421ee10d72528c517d230774f5e5c261a1d59099c05183a02ba004f1300 +62064b1d262451102419109a027d080b7f00c9060d36002d18271960163301166305e3041d1d03bc0460170a2c0e321a280b8700380c09d101960d064a06a310 +1d1d000a3b201776007b000d4500b306431b007f14511d1d1747171b0e0a9c006a06009701861305222b68191222360a7a0d185801af00301300790852201f3d +3b2726281382055b040c9300af060851004e14231a532d1f011a6306cb0219306a0ec00a9d1b5f8c06f406d0100cc91da10c6b225d7658770dd106ad140dcc06 +fb087f483b7b0b8a0d603aab28109809d105ce340edb08fe0d4e7f505c13870b9d2fb5160be105ef052d4a05e30ca30d6a3b0c460dac14eb05566a08f606e80c +359806d40d9330a114506a0cdf06ff0a27dd04df08af2c04bc3b790a6d0643040b5103ee02640802d3039309140d3d6a0a2d0981047a1006ba01cf041a281295 +064f0c2d2f63320c660594024a0803c402a309177105450b350a7e313b0308a302d0030c5f02c605580b3455092b0b5606b701123504d3009908047602b7092c +2929061a2908c0068f04089401ee0428210295135f0a5914280d0a6603fa013d0d02fe02a209041821870a3b0a6404551a06e601c404065708b006500c134b45 +09dd05dd8985c63ace67d256bb45bcdb28d906df608ee300d32edd80a3d551c336be05e1688cdd0bdd0ae2b924d434cd4ec19c8a8f9add21db1de3ae38db14de +43ceee25a367dd6fd78e7d7750de03dd2fd1dd1dd51fdf8286a26bae71dd5bbe56c4dd29df08df568acd42dd35ddc17a79c0dd6cdd58be40c1e308dd14dd9f4b +af02dd129064a32d60c10dbe17dd441add00dd0a977b43c71dc429971dc4552dd40cdb02ac9a01dd12c61d7b6a21a732c621db009e8505d900dd085dd90cad25 +c333828251860bd300dd2071d906d502dd5110b54b9c1bbc326f6c77b603dd00c72c06c30add08a58e456f59b013b3448a2838d900dd04d08a2bbb00dd17717c +8a5743cd17ac2ed06c0cdd00db0373922bd509c9437d35a2771ace19c7018abe7a99ab5fca58c1b446be31c58c2fc167a76d8dae5965c5825db843b74d7bb62b +b742a1c34c9684aa7e869a9e2cb4bc44c040d58c4ed238b26f79ae99909bb28a8d4ff87571c83ac42facbb2bc557a394717ca78279a371c014d5c52dcb3bc56b +7bee34997faa90b077b8a065ae35de5f90df2dc35bc4b84fcb7e8c8fa179d16bc0bc50cb34ca7106b12f883b5b9429647d6c519d1a8e2128ad1bb52d6aa32273 +43835b44797c2d6997329021975d25b320b643299245664d7169553baf443eac1aa00c51a312ae3a8c6f4b4b5a684776539801888924a719ad332eaf1aa35166 +7564346a6a46881bcf2738bc14a7237d8108b550835277337446569636ad10a56f0eba2896314aa31d766c775b921a843a30ad1bbb2759ba17863a89632b8e71 +63c1805e823f97823382198e9a417d4482a182b24d3b9d77a28234853660901f825083ac30637c81bc6d6a5e35cf8749811d837e498a2883a26d965a79d581a7 +6d23b5719f8428832587a92e824b7dab5a609c739d7d5a7a21c6a1448224827c6ab12874b182ae7763b97a8a7d1d96739f970c805e85d1567c6f74c37b7a8a57 +ac82408129a3b9447f38818e7499274a68605781196f2d2482008222687b1d603d6d8e455148317c7d2577147f5f1281068149355f355d746667492883475181 +08770046850482287c6840404c60716333690185712180037f502181007b4860565d407563466b0881325381057e1f69871482306a65651f5b3e68761a810a8d +63118110765547891159626c5681236d4424810082245e810e6b38718935603d13b11b933b355f147e4467559601776725990bb91a1dad06a02e474c1a554b53 +3f8c1690102b9310aa13885308b8317c3a4745235563743fb2099a4112b116b22f53b11d715b79505a44712f38af19a211527b168d1f8345139d5b4d48743657 +339e5335ba1ab22823a113a341717d4b4b8153418636970d63a51db223a056288125a34b60759012798733951fcf3225bb02b111134200452b38296414510226 +6906b009352f08ae0a68221d260a422841238802420e10a701901a0a6606861b3535061a402828810677051b51009310572800771d4d33321f36253a2f209b02 +7606008e007f28203f2d5923293d440471111f6c0d9a08482204660d623521483f213b3b1f640c6a06188f00a50d0d57005a2c3a28532940062e69069c032446 +491d5d1b8111273f1bdf189d1a11bb1a761b2b1d5e582d141b891495131a7e14c81a351d2d7d1a4c1d41378c1d1d4118b816971414b51ac81d2e6f3f2f21501d +9a35960918c819ee19345a12c120691d50481d301d6a1de60d2e3114e816b718147e18b71d5f37651449331dd218d010129e14d21a5d270b9443601d731d651a +28761df0178e1d11e61aa01b282f4b8a385b1da3127f0e147f108d14041a0b8718171d1d1a4e1f1d2918790b2609108a11621d0a580d3a1d031a602524021766 +10a50c103e0d881a211d174b1a011b37168901180e11af0d60100b4910761d0e290a062206198e1060090e600dd5110a1805601b341d281f2d04193214bc0b24 +120ac711671705231f511d011d290c480617a5108a11062c0aa516201a0d343d00f200e534639000d514c44acc0d7bbc01e304f21936f200de0aab3e51a335ae +02be06ee3d43ed03f200e16f00e927be02a9454e9a4ee50df000c97501ef05f202ade528a346e71dc479766c12ed00f214a5dd16de00ee2351ad759924ed23ac +5dc1ba04f200ef0e52c422f002eb74666087ba05e233bb1379ea00f201ee734ebc00ed0aae6db44f6cec13dd1af4663bf400f40abb8f60ee1dc80aa1219b3000 +d000ee007e6000ee0bc40060370d9a10ab16eb00715200e700e8002fb40db5039e175157596300de00d9083bbb03d900c10e00c338880098004c59529000ee00 +bc1200c600db007d584a772890009923962800df00ee00a55f1daa00d6014b7d9b5230ed1dc733ea8d1af700f705a3b648f205e74c8a3dba9829f228e701d0ec +9667bc1dd050b4c009d500cb7955bc4dca4abc8e7362a5bc22c714b13658cb01d10abcab43975fbe50a96f8d3a80c40cd11bd29d33d400c346ab8d86bc74be65 +b52de3a367d414df0ccbc733d614bc7b81609ca35fc135cb03d3c70dd606d16890de09b14fbc6ab782a5b94fd200df59a0db01d72cc8aa77c44ab36bb351d96c +a7c502d903d1ac4ed53dcf57b9db5c8697bc51cb55cc7c6ad506d723bedd2e9e20be30747f734d3dbe01c023ab9010c300c0065583519b16bc436d3eb77f0dc5 +02b90165a700c000bb565e5a48af1aa33fa50181b803ca04c34136c700b4129b4e966645aa1aa30ccf3635c900c806ac7e19c128a31d940d836d6bd328ef1de5 +dd59f42cd98ab7ef5faf96be74d185dbb871db06e76fc7ee1ae75bcac1bcae8946fb52c76b51b765b171848ad72e8a7c58df38f04645dd37d96369833a9d8e6f +71a34cc8285bbe35ee3a88631dee52946a5d756c7c857c71e342be674ffb4ee55968c65cb67488767b8ab66271ce5ff84893be3fdb55a96c2ece8f756f68679e +6abc7564e64ee86a53d756d6698d977f8c96556aa367d74784c557fe57d6935aca68b771719ecc3d7a9860d14ffc605bf055ff6d90b06ac57f97719f68db556a +d050fe2d635a19e336815b296c434e6d4859b4187b3b37d11dc13d22a71da351466f174a832b668d36af1d4a8921c435715f00be4f58663764643d7d3752c026 +a53d26c526a158287b3f795f346c513aaf1a698a33ca4eafb584ee67cf7185c0c0717fad67cd73f78462f65dfc718fc66ce371b08ea587d77e74d96fef48b2cc +28a132898735965671b35e838921cb60568d149a564fa109945f4ba0386c864994761d961d7a861d9c26778d0d9a36688a3f944b459e565d9b11ab562ca13394 +7559d01a71905ac95a638a42af9742a137878a198f4573b9287d5c4fc453976f33a75974a122aa5e43a7378f9860d24b4cb23aa76d5c931fb6a23ea135908f32 +90647ec05c817930db6a798827a76077a928a17a60bb4788ab66b77438be40998646a1209c89109d1f52561451143564333f7c047c26259802833b1f7e06774d +2c7a1937531a595f0e8009515e018c1d4e73017d2d3e771f5b3f26652e3185067a130187066d4f1d7d275063208a3e286c0d519447a181a7c8539f7d8fe35f9d +7752fa7aa3893dbe7d90a73da5795fb74690b273d96956d660c38a699c2dbcba202e1d2c60143f202896265f27088827462901433b354d032948236914214b23 +602601330e572c0a2d1d3d6f0c2c13246d20520e1d7129512e055a221b2f0a35633293081f7429b925233f1681312e2e24472b042b2c3586103b1f1ba9286b20 +1157225a320c44261346092e8a2e9d13127f21a5292735047d50322e312e58103b352ea92262220db0326028065e3b4f510a2e552371132e7e298c210c631f82 +2d22331f6c751d2f06253f120d031d461f1a2d003f111f2d002c3014300323291d5210122013352b0028022f24012914244b00250c1a5d1a281011291a222e00 +2f03002800284217400d173318731d081d06534d65454a3a8520405835df2382481ae9358d3213923b6c5023364b2060142e9b2eb11b14a32ea136524e0e8373 +00f600b014256f0080065932ae00444600d202e50000ad00e6064025003e1f2700a305ae0016a500ef00682800f41987002f0b29532c5708d900851101f800e3 +005bbc28a332760e5f497b3803c900df0063920ad100a30817a04b550c690c6f2e804900ec00e2020ab500bc006f5a67645c2f00901abb0d4bab00ff00bc4421 +9700b3066b60b513527d0bc010e30c00e800fe06576517921471169b23a71606c009fc00857500ff10c4063a350d4300280a8a00250000d400990000690ac041 +d38aaaa36c600089008600005300cb004700008c1d55000d004f1d1f0d00a3007500009d00900000282f6f030d006c5fbe3e63e200ff00c69623ce00e23b678f +a05875be35c031e15600fc00f70242a113ae027e3a903fa0471ac11ae5008fb39c6dd336e151bad309ee00df774eca50cf4dcd9284699bc036dd29d14a6cd700 +e60ecdba4bb062cf51b26f9e4c93d11de81bdb9833e300e2469c908ab86dce5cc430e3a575e81af820d1d436ea0ad57d9985b6b56fd53ae218d6ce12f206e573 +87df14ca5ace6cc58397b951e701eb62a1e201ec28d4b27ece4cc67ed151df7aadd902f708e3ba55ec40e569c8ce6d8f89cf50de50ce896cec0eee2fcdd634d3 +52d488b68f8f949ed633ec36d4cd2feb00e328568f519d25a5448a51e2dbbcf645fa87dbf05afb29dd7c68675da12ca23db5017fb100e705df462fd600d0149a +5bb17176c02fd20de6373be205fc62e2df8cf25edfa0ca92dfa9badf1afc31e3d551ff28ee8fc6e162bc85d463df6cc6ae63f205ee41c3e21be84cd9b2aead81 +06ff00ec6a62b932cf49b95ad720abab1ae905f8353efb00ec25ad7e60b94da12dbe08fb3a6ae808fc09cf8a03f430c93b9f75639368c71bff00d36a14fb0cf4 +24a0f82bb567d57cce9e9e846afe0bff24c9f018ef14e86655b67b9464c44cab57d3a519ff01fe3164d126ef26d29f6f6aa59545d148cf21b4f70dfe0dfca956 +db37ef63b980bc65b8e240e620fe7d4fff03ff2bbaaf60ee46ce60bc2eff7a73ee1afe09dfd00bff1ae66ba0b666bc6ad33bfc0ecb9b21f806ffa5e2ff28e67b +f8caecd2add2a0f820ff5da3e206f418ea7720d667cb86e397ad84b4e936ff25ffb186f834fe52dddb5a98a1e5a0f490c971aeff19ff29fcee49fc35f480a198 +a084a9e359dd3ef4a24aff06ff2f9dcc51f733de889b4ee28e5de932ed10d9ee7a8a9e57be3ea39a35f42fcf7635cf3ea07c58817a7185536dbe2cd03a5bcd14 +df38858d52a767768c6f62ae418f9047d91dcd7146d930e76f5b99636b907a71b34ace597bec40f85fa7bc60fc7ac690aea5929890b24dee2b96863df211d26b +49bb3bcf748a8aad5ca26d65e327e9526ccd17e34e9a9646cc7da590c179bb639bc046fc41d78c4dee42ca7d799c71a78e908ad751ce6b7cf63dfe679fb657c4 +6aa7907496b27e90d977e362d0b96ff65df89076c469978a7b779b66c37d81f855f06da9e360ff7de1a2a1b493cf90cd7de256b7d368f749f49094ec75f692cc +b5bea7a2c382db50f47587fb49fb6cb5a355ef79c490bb87b18597cf52ff3ac48950fe3edb7e81b36ac48ab492d355ba7671ff37ff628acf3dd160a7905bb29f +019f006043126808314d2f3377006f3a289002a01d1a8700801a2151061f281d2b43048c06356c06a50c5a4802981a513e1b411d274f2b187e00711b0da7048a +372db21f896f50a55e76a0368a971dd91d83b90acd2b797111904b385f2e4350146d1a178f008d1205850067362969354668215b55229c0669760db6007e6f0e +8a215075366b83108d4b3b940dc7272ea700a927368810815b3a776323c522698a1ae51175740dd416806f2c9047578c575ab001a75728cd06ab3025a2098536 +3f7f2250732b6a8318d42283a503d1277d8906cc607ba362928e4bbb6849c612cb592ecd1aad5a40cf3a7a8c43906f51ac14808919c50d869212ba316373237a +6f288947448319b52b2fb700b635288a0d66353263462f902052711dd5068d920b510d112206340d0137002d4306470b23530d5911064c0d3f21032804062101 +2200103b05292810680d282b065a18102c02231b04270014310c3a0914690d53301298227660178d164d760c624e0d9a0b4d6a0d92272e710b7c422358033135 +0a47000c3b0d430d09490d2917004b14334f014724176a0942270d7a0d2d4708560d0253064a510d7317376a13881d1d6a0d6f230b6d0a484901653825900650 +4b137d13433e0b901a354a045b171060062b710c77282b97107d3a1b7b114c35065a031b3a022d140d6a092f620da02d528f08bc514b9704715127870927840d +87280d9b166341068f2b59680a7a2b3a820c6d400d8d0d45660b8c2625790d6c531a82103b5b1377111a6d0d6b1408600c2d2b004119266902564e29b813685e +6a958c5ac532c0a326fc17d68930db459d7e50a26671b55676ba2fdf3a76df0bef358ab63da56d71a57174af2faf873ad610d56c2dee14dd7e62b0757eb38699 +ba53f488b6f736fc6dd1ed60fe7cdfd7b2b1d69ecac964ef38dbc05dfb08e38852e31dc0796a929a53ba6a65e202ee3d77dd02e33897be36d66f9baea17ad159 +c0c734fe2de6b24bf23dc8a781d9719fb298a9e566ef8ca7fc48ff6ac9eb63c6759ec742899c77ccaf53d426e7ad4cfa32f8a97ad57eb0bc93b0a967dd759adb +2eee3390ec28fb4ca5a55da1bcbcd7cd90e66fe3d776fc33f4b387f45df6b9acc6c3a1d9ac9bd935fb759dec27f85fc4dd59fa77c8c9b992d277ccd253ff38de +be5bff2ed5a27be75dbeaaa5a7e16ade8987ff1bff77c0f444e28ac4d98fd4c022fe05ee9076c65bdd84be6ad93dc3ac3fe705fc606cf403ed43a99e67c076b0 +71d628e9477fde0cfb18c9a320f62fb6628f86759092c03fff23e5884ffc1afe76c4f45acc94e9b9eaadccb1bcff4fff67e9f64ef851ffbe8ac98ab1aee28ace +6ad7ba4aff11f75866df31ef58aaa5797ea58f7fcc50d63eb6ee31ff1ff7be6fe55bfb9abc9ac677c7d763e925ff9275ff27ff71e9dfa5ffa2f8add581ffbab7 +fc3afe35e8e658ff33df6a80bc7cc69ddd65fc44e1b85dfb13ff77a5f82fd776deb3b3b29ea57bf43fff8ce7ff52fe60ffd58fe27cd9a9edb2cb9bd4ee6fff3b +f7a786f440ff7cd4d473aba3d5a0db77cd7dbefc40ff46f2d962ee55fca9a1adaa98bee679db47f7aa75ff29fe6bb8e171fc93fcbcc090ebdbabf857f65cebf8 +7f49ae27c53595a906f400cb4e38c53eb6378a7d6f64847d2bc622cd3b50c90be8059f903ba04c9e468a5e9c35649e0edb12c5662bdb00d436768a719760a769 +be3dec887aec1afa37becf3dff30d490a181aea587d037ee31c8b52df806ee667bd623d055a95da7577f8530df01e1355ecc01e820ae8a4bc0499e51ae3dc165 +96c406fc11d7933deb33d4539eb36a9c8eb959df58de9095fc23ff4ccbdf4cd46fcca9a58ea17f84cc2cd928b7a726ee0ae34e6ab160b54eae79a150be884bdf +1aee2890cf2bfe44e3b79dbeb1c799d05adb4acccc3af209f79771ed28f25fb788acada0b45cdb0df26073ed08f829b7af40eb3bbb67aa58bb7c80cb18fe18cb +a52cfe1ddf5d8fc445b571b34fcd55ba8a49fe06ff45baf62ce360d3b295bb8c00f600c93d35861297247c3dbc03746a13d703de1422d300e3166f5b337d316f +1ab405c11b40be05f402924e00e3239a25604642603f7e0ae800b7510df80df22d88dd29b45cbc60a57e98775df000f81bb2d614ea17e16049ae6d8357a5469c +4eb78213f600ec2741c11acb14816a6260765a35ad30c50e60c100f801d97135bb22d3428766ac3577a029d318ee5d45f801ff31bbb26bea53d66cc038e67174 +e91afe0acebc0dfe16cf496a85409e4baa27ed0cb07712f404ee1d47de0dc8309f648da793ab77f411fb4fb5ed08f71be3902fd256b366af688c6fa5ba17fc08 +ed5e4ce71aec278aa04c866f9d53b151b2355ee200f709c7a026cb1bd3506a84905b629d2db52bd65920f200fa1466ab2ece2da24f893fb25c47d62bea06b9d7 +2d081d02580927220299005a0b087909590519163d35361902530471050b5f0093001d280e600a25083629671410290195035910047b006a06194d2735103021 +9023ad1917a503ed04477108bb06642c433b3f1d125c1ac9025c3b02d9019510137b0177182b2142103419059c00a309128301c30438240d772c450b3e06640e +2e5601ce007e2106be168f111d623e694f380b8a0d9f2018c703dd084d931b9e2152343b5e6f33335b06ac08733204b0008c0b1a76204d0a24236829691608a9 +05e30b53a506d9047c6a455e4e41266c38cc08665804d701a51b10a0019b143140481a2e3319a90ab510139d01f00544480a9b1a510d4216511416600bd00064 +2903d9047d09175f1a681f2310590c501408b100a7041d7408a00637141d594d06d10c764a0c862c51552f47880088352fbb09b1201fab06b92e2d7114584624 +41670da304497d12df116b6803cf2c66471464303a663a20bc05af4319e91ac04c52eb299f8568a56a7aa73f90b019e6108ab114ca2f8a9713af685b95427187 +36b24135ce0bd52c23bc1b9c483a95505e931a71743abc0984920de20d957e1db038747e4e75a21fb15e55b41be93531d90bed4667c342af8781a2a33aee3d90 +b82cec19a7ab12ec28a5873da95c6f8f6345c703b45629e111c83b3bf016c37f87cb7ba1ad79b3d438f23aa1d912de37acac0dc85d849e5d92804bac603bd60a +cf5134df26b55946c7437f974c92765cb41a8ea30ee30c99901abb357a86328a7b2b9c3d519922cb3b2fc60ad72430aa1f8f504075643eab0e5e832dd5067d8a +6ff77aadb460cfaa7bbc60b5d152b86a8ad952e1746fd... [truncated message content] |
From: <jd...@us...> - 2007-10-26 19:46:16
|
Revision: 4023 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4023&view=rev Author: jdh2358 Date: 2007-10-26 12:46:12 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added some data files Added Paths: ----------- trunk/py4science/examples/data/ascii_data.dat trunk/py4science/examples/data/noisy_sine.dat Added: trunk/py4science/examples/data/ascii_data.dat =================================================================== --- trunk/py4science/examples/data/ascii_data.dat (rev 0) +++ trunk/py4science/examples/data/ascii_data.dat 2007-10-26 19:46:12 UTC (rev 4023) @@ -0,0 +1,20 @@ +0.000000000000000000e+00 9.145603391848877717e-02 +5.000000000000000278e-02 7.510694227138386969e-01 +1.000000000000000056e-01 6.669951383239240972e-01 +1.500000000000000222e-01 1.079550818011764335e+00 +2.000000000000000111e-01 1.358135068895490960e+00 +2.500000000000000000e-01 1.382681167849497683e+00 +3.000000000000000444e-01 1.331570128487948645e+00 +3.500000000000000333e-01 1.043435083128472662e+00 +4.000000000000000222e-01 1.018502315779662437e+00 +4.500000000000000111e-01 4.920368858486855457e-01 +5.000000000000000000e-01 1.430933654927990517e-01 +5.500000000000000444e-01 -1.229953315040354100e-01 +6.000000000000000888e-01 -3.251745729320391076e-01 +6.500000000000000222e-01 -7.181972448934246245e-01 +7.000000000000000666e-01 -6.840523673038090280e-01 +7.500000000000000000e-01 -8.931379597988713392e-01 +8.000000000000000444e-01 -8.623941393445450077e-01 +8.500000000000000888e-01 -3.877313197805652978e-01 +9.000000000000000222e-01 -3.276871269421997024e-01 +9.500000000000000666e-01 1.487229624580849174e-02 Added: trunk/py4science/examples/data/noisy_sine.dat =================================================================== --- trunk/py4science/examples/data/noisy_sine.dat (rev 0) +++ trunk/py4science/examples/data/noisy_sine.dat 2007-10-26 19:46:12 UTC (rev 4023) @@ -0,0 +1,100 @@ +0.000000000000000000e+00 1.550947826934816025e-02 +2.000000000000000042e-02 2.493944587057004725e+00 +4.000000000000000083e-02 9.497694074551737975e-01 +5.999999999999999778e-02 -9.185779287524413750e-01 +8.000000000000000167e-02 -2.811127590689064704e+00 +1.000000000000000056e-01 -2.776833383782101317e-01 +1.199999999999999956e-01 1.077392947834240555e+00 +1.400000000000000133e-01 7.004856811868249711e-01 +1.600000000000000033e-01 -1.013556396656452474e+00 +1.799999999999999933e-01 -1.826614855745823052e+00 +2.000000000000000111e-01 6.067977896438602192e-01 +2.200000000000000011e-01 5.888517580137988539e-01 +2.399999999999999911e-01 1.433679405848928834e-01 +2.600000000000000089e-01 -1.634304661384476720e+00 +2.800000000000000266e-01 -2.108458070565329745e+00 +2.999999999999999889e-01 -3.851122401619442304e-01 +3.200000000000000067e-01 1.969888120473673343e+00 +3.400000000000000244e-01 6.584338142075716327e-01 +3.599999999999999867e-01 -1.649122054225878431e+00 +3.800000000000000044e-01 -1.857887772916814173e+00 +4.000000000000000222e-01 -6.027171852233130789e-01 +4.199999999999999845e-01 2.765482418871053838e+00 +4.400000000000000022e-01 7.109124122419079317e-01 +4.600000000000000200e-01 -1.452337048346942883e+00 +4.799999999999999822e-01 -6.250470361038324985e-01 +5.000000000000000000e-01 -4.130121966119938426e-01 +5.200000000000000178e-01 1.731145429978572681e+00 +5.400000000000000355e-01 1.234809083309003963e+00 +5.600000000000000533e-01 -1.978726715481986531e+00 +5.799999999999999600e-01 -1.803676863553648424e+00 +5.999999999999999778e-01 8.166038602011259639e-01 +6.199999999999999956e-01 3.094009215891308173e+00 +6.400000000000000133e-01 9.393620120657302230e-01 +6.600000000000000311e-01 -1.475754716351241225e+00 +6.800000000000000488e-01 -2.083573270162343061e+00 +7.000000000000000666e-01 -7.089343020706403431e-01 +7.199999999999999734e-01 1.965218048371875970e+00 +7.399999999999999911e-01 1.500890537373157807e+00 +7.600000000000000089e-01 -4.811799898500840333e-01 +7.800000000000000266e-01 -2.052612622174197377e+00 +8.000000000000000444e-01 -2.917537401922250528e-01 +8.200000000000000622e-01 2.024181341183758143e+00 +8.399999999999999689e-01 1.469145076546681805e+00 +8.599999999999999867e-01 -7.823038455555147985e-01 +8.800000000000000044e-01 -1.568267832534419703e+00 +9.000000000000000222e-01 3.587818068297337071e-01 +9.200000000000000400e-01 2.924549847452241558e+00 +9.400000000000000577e-01 1.582531589864080823e+00 +9.599999999999999645e-01 -1.966784413021317013e+00 +9.799999999999999822e-01 -1.776693015993594971e+00 +1.000000000000000000e+00 -2.893507284281017777e-01 +1.020000000000000018e+00 1.602689752359933939e+00 +1.040000000000000036e+00 9.647434335771226666e-01 +1.060000000000000053e+00 -1.471865322604567705e+00 +1.080000000000000071e+00 -1.341639657041705291e+00 +1.100000000000000089e+00 -1.399346882970772532e-01 +1.120000000000000107e+00 1.632619661667839450e+00 +1.140000000000000124e+00 1.619129607026748241e+00 +1.159999999999999920e+00 -1.448217335224722957e+00 +1.179999999999999938e+00 -2.414017235841884990e+00 +1.199999999999999956e+00 -1.256672794283168582e+00 +1.219999999999999973e+00 1.668364542732154954e+00 +1.239999999999999991e+00 2.035595780924793985e+00 +1.260000000000000009e+00 -1.576037078271899983e+00 +1.280000000000000027e+00 -2.314745115600072900e+00 +1.300000000000000044e+00 2.674534562875838795e-01 +1.320000000000000062e+00 1.635838216899947017e+00 +1.340000000000000080e+00 7.129330675752424407e-01 +1.360000000000000098e+00 -1.016299038269800725e+00 +1.380000000000000115e+00 -1.945184044230353182e+00 +1.400000000000000133e+00 2.661675648569922226e-01 +1.419999999999999929e+00 1.951070027692299647e+00 +1.439999999999999947e+00 7.733957573906409255e-01 +1.459999999999999964e+00 -1.315709018562382759e+00 +1.479999999999999982e+00 -1.719162423224898761e+00 +1.500000000000000000e+00 3.811812603672025124e-01 +1.520000000000000018e+00 1.497618533338568536e+00 +1.540000000000000036e+00 1.001838448967501183e+00 +1.560000000000000053e+00 -1.737003253920293533e+00 +1.580000000000000071e+00 -9.993740443138939833e-01 +1.600000000000000089e+00 1.772498531281661294e-01 +1.620000000000000107e+00 2.001248546038760789e+00 +1.640000000000000124e+00 1.354612727312650700e+00 +1.660000000000000142e+00 -4.525256276699157754e-01 +1.679999999999999938e+00 -2.676810600217551794e+00 +1.699999999999999956e+00 7.368228651729277767e-02 +1.719999999999999973e+00 2.436633426751477760e+00 +1.739999999999999991e+00 1.708910716756462111e-01 +1.760000000000000009e+00 -1.181802289771961334e+00 +1.780000000000000027e+00 -2.321145324630083717e+00 +1.800000000000000044e+00 8.265079542306158489e-01 +1.820000000000000062e+00 1.771255657253377969e+00 +1.840000000000000080e+00 5.292874855155531577e-01 +1.860000000000000098e+00 -8.627840737591682130e-01 +1.880000000000000115e+00 -2.128892609177524875e+00 +1.900000000000000133e+00 -3.237690057350091632e-01 +1.919999999999999929e+00 1.645608775030620308e+00 +1.939999999999999947e+00 7.239576971058980792e-01 +1.959999999999999964e+00 -2.248911218321566263e+00 +1.979999999999999982e+00 -1.973555763846380984e+00 This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-26 19:44:09
|
Revision: 4022 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4022&view=rev Author: jdh2358 Date: 2007-10-26 12:44:07 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added some more workbook files Added Paths: ----------- trunk/py4science/workbook/glass_dots.tex trunk/py4science/workbook/intro_linalg.tex trunk/py4science/workbook/intro_sigproc.tex Added: trunk/py4science/workbook/glass_dots.tex =================================================================== --- trunk/py4science/workbook/glass_dots.tex (rev 0) +++ trunk/py4science/workbook/glass_dots.tex 2007-10-26 19:44:07 UTC (rev 4022) @@ -0,0 +1,52 @@ +\section{Glass Moir\'e Patterns} +\label{sec:glass_patterns} + +When a random dot pattern is scaled, rotated, and superimposed over +the original dots, interesting visual patterns known as Glass Patterns +emerge\footnote{L. Glass. 'Moir\'e effect from random dots' Nature 223, + 578580 (1969).} In this exercise, we generate random dot fields +using numpy's uniform distribution function, and apply +transformations to the random dot field using a scale $\mathbf{S}$ +and rotation $\mathbf{R}$ matrix $\mathbf{X_2} = \mathbf{S} \mathbf{R} +\mathbf{X_1}$. + +If the scale and rotation factors are small, the transformation is +analogous to a single step in the numerical solution of a 2D ODE, and +the plot of both $\mathbf{X_1}$ and $\mathbf{X_2}$ will reveal the +structure of the vecotr field flow around the fixed point (the +invariant under the transformation); see for example the +\textit{stable focus}, aka \textit{spiral}, in +Figure~\ref{fig:glass_dots1}. + +The eigenvalues of the tranformation matrix $\mathbf{M} = +\mathbf{S}\mathbf{R}$ determine the type of fix point: +\textit{center}, \textit{stable focus}, \textit{saddle node}, +etc\dots. For example, if the two eigenvalues are real but differing +in signs, the fixed point is a \textit{saddle node}. If the real +parts of both eigenvalues are negative and the eigenvalues are +complex, the fixed point is a \textit{stable focus}. The complex part +of the eigenvalue determines whether there is any rotation in the +matrix transformation, so another way to look at this is to break out +the scaling and rotation components of the transformation +$\textbf{M}$. If there is a rotation component, then the fixed point +will be a \textit{center} or a \textit{focus}. If the scaling +components are both one, the rotation will be a \textit{center}, if +they are both less than one (contraction), it will be a \textit{stable + focus}. Likewise, if there is no rotation component, the fixed +point will be a \textit{node}, and the scaling components will +determine the type of node. If both are less than one, we have a +\textit{stable node}, if one is greater than one and the other less +than one, we have a \textit{saddle node}. + +\lstinputlisting[label=code:glass_dots1_skel,caption={IGNORED}]{skel/glass_dots1_skel.py} + + + +\begin{center}% +\begin{figure} +\begin{centering}\includegraphics[width=4in]{fig/glass_dots1}\par\end{centering} + + +\caption{\label{fig:glass_dots1}Glass pattern showing a stable focus} +\end{figure} +\par\end{center} Added: trunk/py4science/workbook/intro_linalg.tex =================================================================== --- trunk/py4science/workbook/intro_linalg.tex (rev 0) +++ trunk/py4science/workbook/intro_linalg.tex 2007-10-26 19:44:07 UTC (rev 4022) @@ -0,0 +1,49 @@ +Like matlab, numpy and scipy have support for fast linear algebra +built upon the highly optimized LAPACK, BLAS and ATLAS fortran linear +algebra libraries. Unlike Matlab, in which everything is a matrix or +vector, and the '*' operator always means matrix multiple, the default +object in numpy is an \texttt{array}, and the '*' operator on arrays means +element-wise multiplication. + +Instead, numpy provides a \texttt{matrix} class if you want to do +standard matrix-matrix multiplication with the '*' operator, or the +\texttt{dot} function if you want to do matrix multiplies with plain +arrays. The basic linear algebra functionality is found in +\texttt{numpy.linalg} + +\begin{lstlisting} +In [1]: import numpy as npy +In [2]: import numpy.linalg as linalg + +# X and Y are arrays +In [3]: X = npy.random.rand(3,3) +In [4]: Y = npy.random.rand(3,3) + +# * operator is element wise multiplication, not matrix matrix +In [5]: print X*Y +[[ 0.00973215 0.18086148 0.05539387] + [ 0.00817516 0.63354021 0.2017993 ] + [ 0.34287698 0.25788149 0.15508982]] + +# the dot function will use optimized LAPACK to do matrix-matix +# multiply +In [6]: print npy.dot(X, Y) +[[ 0.10670678 0.68340331 0.39236388] + [ 0.27840642 1.14561885 0.62192324] + [ 0.48192134 1.32314856 0.51188578]] + +# the matrix class will create matrix objects that support matrix +# multiplication with * +In [7]: Xm = npy.matrix(X) +In [8]: Ym = npy.matrix(Y) +In [9]: print Xm*Ym +[[ 0.10670678 0.68340331 0.39236388] + [ 0.27840642 1.14561885 0.62192324] + [ 0.48192134 1.32314856 0.51188578]] + +# the linalg module provides functions to compute eigenvalues, +# determinants, etc. See help(linalg) for more info +In [10]: print linalg.eigvals(X) +[ 1.46131600+0.j 0.46329211+0.16501143j 0.46329211-0.16501143j] + +\end{lstlisting} Added: trunk/py4science/workbook/intro_sigproc.tex =================================================================== --- trunk/py4science/workbook/intro_sigproc.tex (rev 0) +++ trunk/py4science/workbook/intro_sigproc.tex 2007-10-26 19:44:07 UTC (rev 4022) @@ -0,0 +1,15 @@ +\texttt{numpy} and \texttt{scipy} provide many of the essential tools +for digital signal processing. \texttt{scipy.signal} provides basic +tools for digital filter design and filtering (eg Butterworth +filters), a linear systems toolkit, standard waveforms such as square +waves, and saw tooth functions, and some basic wavelet functionality. +\texttt{scipy.fftpack} provides a suite of tools for Fourier domain +analysis, including 1D, 2D, and ND discrete fourier transform and +inverse functions, in addition to other tools such as analytic signal +representations via the Hilbert trasformation (\texttt{numpy.fft} also +provides basic FFT functions). \texttt{pylab} provides Matlab +compatible functions for computing and plotting standard time series +analyses, such as historgrams (\texttt{hist}), auto and cross +correlations (\texttt{acorr} and \texttt{xcorr}), power spectra and +coherence spectra (\texttt{psd}, \texttt{csd}, \texttt{cohere} and +\texttt{specgram}. This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-26 19:43:28
|
Revision: 4021 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4021&view=rev Author: jdh2358 Date: 2007-10-26 12:43:27 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added convolution example Added Paths: ----------- trunk/py4science/workbook/convolution.tex Added: trunk/py4science/workbook/convolution.tex =================================================================== --- trunk/py4science/workbook/convolution.tex (rev 0) +++ trunk/py4science/workbook/convolution.tex 2007-10-26 19:43:27 UTC (rev 4021) @@ -0,0 +1,27 @@ + + +\begin{center}% +\begin{figure} +\begin{centering}\includegraphics[width=4in]{fig/convolve_explain}\par\end{centering} +\caption{\label{fig:convolve_explain}The output of a linear system to a series of impulse inputs is equal to the sum of the scaled and time shifted impulse response functions.} +\end{figure} +\par\end{center} + +\begin{center}% +\begin{figure} +\begin{centering}\includegraphics[width=4in]{fig/convolve_deltas}\par\end{centering} +\caption{\label{fig:convolve_deltas}Representing a continuous time signal sampled as a sum of delta functions.} +\end{figure} +\par\end{center} + + +\lstinputlisting[label=code:convolution_demo,caption={IGNORED}]{skel/convolution_demo_skel.py} + + + +\begin{center}% +\begin{figure} +\begin{centering}\includegraphics[width=4in]{fig/convolution_demo}\par\end{centering} +\caption{\label{fig:convolution_demo}Convolution of a white noise process with a double exponential function computed with \texttt{numpy.fft} and \texttt{numpy.convolve}} +\end{figure} +\par\end{center} This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <md...@us...> - 2007-10-26 18:44:20
|
Revision: 4020 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4020&view=rev Author: mdboom Date: 2007-10-26 11:44:16 -0700 (Fri, 26 Oct 2007) Log Message: ----------- Initialized merge tracking via "svnmerge" with revisions "1-3806" from https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/transforms Property Changed: ---------------- trunk/matplotlib/ Property changes on: trunk/matplotlib ___________________________________________________________________ Name: svnmerge-integrated + /branches/transforms:1-3806 This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <md...@us...> - 2007-10-26 18:32:47
|
Revision: 4019 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4019&view=rev Author: mdboom Date: 2007-10-26 11:32:44 -0700 (Fri, 26 Oct 2007) Log Message: ----------- Can't drag zoom on a polar plot. Finessing Agg drawing quality a little bit. Modified Paths: -------------- branches/transforms/lib/matplotlib/axes.py branches/transforms/lib/matplotlib/backend_bases.py branches/transforms/lib/matplotlib/projections/polar.py branches/transforms/src/_backend_agg.cpp Modified: branches/transforms/lib/matplotlib/axes.py =================================================================== --- branches/transforms/lib/matplotlib/axes.py 2007-10-26 18:04:51 UTC (rev 4018) +++ branches/transforms/lib/matplotlib/axes.py 2007-10-26 18:32:44 UTC (rev 4019) @@ -1820,6 +1820,12 @@ #### Interactive manipulation + def can_zoom(self): + """ + Return True if this axes support the zoom box + """ + return True + def get_navigate(self): """ Get whether the axes responds to navigation commands Modified: branches/transforms/lib/matplotlib/backend_bases.py =================================================================== --- branches/transforms/lib/matplotlib/backend_bases.py 2007-10-26 18:04:51 UTC (rev 4018) +++ branches/transforms/lib/matplotlib/backend_bases.py 2007-10-26 18:32:44 UTC (rev 4019) @@ -1361,7 +1361,8 @@ self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): - if x is not None and y is not None and a.in_axes(event) and a.get_navigate(): + if x is not None and y is not None and a.in_axes(event) \ + and a.get_navigate() and a.can_zoom(): self._xypress.append(( x, y, a, i, a.viewLim.frozen(), a.transData.frozen())) self.press(event) Modified: branches/transforms/lib/matplotlib/projections/polar.py =================================================================== --- branches/transforms/lib/matplotlib/projections/polar.py 2007-10-26 18:04:51 UTC (rev 4018) +++ branches/transforms/lib/matplotlib/projections/polar.py 2007-10-26 18:32:44 UTC (rev 4019) @@ -55,8 +55,11 @@ transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): - path = path.interpolated(self._resolution) - return Path(self.transform(path.vertices), path.codes) + vertices = path.vertices + if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]: + return Path(self.transform(vertices), path.codes) + ipath = path.interpolated(self._resolution) + return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path @@ -151,7 +154,7 @@ def refresh(self): return self.base.refresh() - RESOLUTION = 50 + RESOLUTION = 75 def __init__(self, *args, **kwargs): """ @@ -377,6 +380,12 @@ return 1.0 ### Interactive panning + + def can_zoom(self): + """ + Return True if this axes support the zoom box + """ + return False def start_pan(self, x, y, button): angle = self._r_label1_position.to_values()[4] / 180.0 * npy.pi Modified: branches/transforms/src/_backend_agg.cpp =================================================================== --- branches/transforms/src/_backend_agg.cpp 2007-10-26 18:04:51 UTC (rev 4018) +++ branches/transforms/src/_backend_agg.cpp 2007-10-26 18:32:44 UTC (rev 4019) @@ -95,8 +95,8 @@ unsigned vertex(double* x, double* y) { unsigned cmd = m_source->vertex(x, y); if (m_quantize && agg::is_vertex(cmd)) { - *x = int(*x) + 0.5; - *y = int(*y) + 0.5; + *x = round(*x) + 0.5; + *y = round(*y) + 0.5; } return cmd; } @@ -389,7 +389,7 @@ } trans.transform(&x1, &y1); - if (!(fabs(x0 - x1) < 0.001 || fabs(y0 - y1) < 0.001)) { + if (!(fabs(x0 - x1) < 1e-4 || fabs(y0 - y1) < 1e-4)) { path.rewind(0); return false; } This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <md...@us...> - 2007-10-26 18:04:53
|
Revision: 4018 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4018&view=rev Author: mdboom Date: 2007-10-26 11:04:51 -0700 (Fri, 26 Oct 2007) Log Message: ----------- Fix polar plot title so it doesn't clash with 90 degree value. Modified Paths: -------------- branches/transforms/lib/matplotlib/projections/polar.py Modified: branches/transforms/lib/matplotlib/projections/polar.py =================================================================== --- branches/transforms/lib/matplotlib/projections/polar.py 2007-10-26 18:00:23 UTC (rev 4017) +++ branches/transforms/lib/matplotlib/projections/polar.py 2007-10-26 18:04:51 UTC (rev 4018) @@ -175,6 +175,8 @@ self.grid(rcParams['polaraxes.grid']) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') + + self.title.set_y(1.06) def _set_lim_and_transforms(self): self.dataLim = Bbox.unit() This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <md...@us...> - 2007-10-26 18:00:26
|
Revision: 4017 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4017&view=rev Author: mdboom Date: 2007-10-26 11:00:23 -0700 (Fri, 26 Oct 2007) Log Message: ----------- Removed unused imports. Modified Paths: -------------- branches/transforms/lib/matplotlib/_mathtext_data.py branches/transforms/lib/matplotlib/art3d.py branches/transforms/lib/matplotlib/artist.py branches/transforms/lib/matplotlib/axes.py branches/transforms/lib/matplotlib/axes3d.py branches/transforms/lib/matplotlib/axis.py branches/transforms/lib/matplotlib/backend_bases.py branches/transforms/lib/matplotlib/collections.py branches/transforms/lib/matplotlib/colorbar.py branches/transforms/lib/matplotlib/colors.py branches/transforms/lib/matplotlib/contour.py branches/transforms/lib/matplotlib/dates.py branches/transforms/lib/matplotlib/figure.py branches/transforms/lib/matplotlib/finance.py branches/transforms/lib/matplotlib/font_manager.py branches/transforms/lib/matplotlib/fontconfig_pattern.py branches/transforms/lib/matplotlib/image.py branches/transforms/lib/matplotlib/legend.py branches/transforms/lib/matplotlib/lines.py branches/transforms/lib/matplotlib/mathtext.py branches/transforms/lib/matplotlib/mlab.py branches/transforms/lib/matplotlib/patches.py branches/transforms/lib/matplotlib/proj3d.py branches/transforms/lib/matplotlib/scale.py branches/transforms/lib/matplotlib/table.py branches/transforms/lib/matplotlib/texmanager.py branches/transforms/lib/matplotlib/text.py branches/transforms/lib/matplotlib/ticker.py branches/transforms/lib/matplotlib/units.py Modified: branches/transforms/lib/matplotlib/_mathtext_data.py =================================================================== --- branches/transforms/lib/matplotlib/_mathtext_data.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/_mathtext_data.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -14,8 +14,6 @@ print charcode, glyphind """ -from sets import Set - latex_to_bakoma = { r'\oint' : ('cmex10', 45), r'\bigodot' : ('cmex10', 50), Modified: branches/transforms/lib/matplotlib/art3d.py =================================================================== --- branches/transforms/lib/matplotlib/art3d.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/art3d.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -10,7 +10,6 @@ import text from colors import Normalize -from cm import jet import numpy as npy import proj3d Modified: branches/transforms/lib/matplotlib/artist.py =================================================================== --- branches/transforms/lib/matplotlib/artist.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/artist.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -1,9 +1,7 @@ from __future__ import division -import sys, re, warnings +import re, warnings from cbook import iterable, flatten -from transforms import Affine2D, Bbox, IdentityTransform, TransformedBbox, \ - TransformedPath -import matplotlib.units as units +from transforms import Bbox, IdentityTransform, TransformedBbox, TransformedPath ## Note, matplotlib artists use the doc strings for set and get # methods to enable the introspection methods of setp and getp. Every Modified: branches/transforms/lib/matplotlib/axes.py =================================================================== --- branches/transforms/lib/matplotlib/axes.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/axes.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -1,5 +1,5 @@ from __future__ import division, generators -import math, sys, warnings, copy, new +import math, warnings, new import numpy as npy @@ -9,7 +9,6 @@ rcParams = matplotlib.rcParams from matplotlib import artist as martist -from matplotlib import agg from matplotlib import axis as maxis from matplotlib import cbook from matplotlib import collections as mcoll @@ -21,9 +20,7 @@ from matplotlib import legend as mlegend from matplotlib import lines as mlines from matplotlib import mlab -from matplotlib import cm from matplotlib import patches as mpatches -from matplotlib import path as mpath from matplotlib import quiver as mquiver from matplotlib import scale as mscale from matplotlib import table as mtable Modified: branches/transforms/lib/matplotlib/axes3d.py =================================================================== --- branches/transforms/lib/matplotlib/axes3d.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/axes3d.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -11,12 +11,10 @@ import random -import matplotlib from axes import Axes import cbook from transforms import unit_bbox -import figure import numpy as npy from colors import Normalize Modified: branches/transforms/lib/matplotlib/axis.py =================================================================== --- branches/transforms/lib/matplotlib/axis.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/axis.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -2,23 +2,19 @@ Classes for the ticks and x and y axis """ from __future__ import division -import copy -import math -import re -import sys from artist import Artist, setp from cbook import enumerate, silent_list, popall, CallbackRegistry from lines import Line2D, TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN from matplotlib import rcParams from patches import bbox_artist -from ticker import NullFormatter, FixedFormatter, ScalarFormatter, LogFormatter, LogFormatterMathtext -from ticker import NullLocator, FixedLocator, LinearLocator, LogLocator, AutoLocator +from ticker import NullFormatter, FixedFormatter, ScalarFormatter +from ticker import NullLocator, FixedLocator, AutoLocator from font_manager import FontProperties -from text import Text, TextWithDash, _process_text_args -from transforms import Affine2D, Bbox, blended_transform_factory, interval_contains, \ - interval_contains_open, IdentityTransform +from text import Text, TextWithDash +from transforms import Affine2D, Bbox, blended_transform_factory, \ + interval_contains from patches import bbox_artist from scale import scale_factory Modified: branches/transforms/lib/matplotlib/backend_bases.py =================================================================== --- branches/transforms/lib/matplotlib/backend_bases.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/backend_bases.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -4,10 +4,9 @@ """ from __future__ import division -import os, sys, warnings, copy, weakref +import os import numpy as npy -import matplotlib.numerix.npyma as ma import matplotlib.cbook as cbook import matplotlib.colors as colors import matplotlib.transforms as transforms Modified: branches/transforms/lib/matplotlib/collections.py =================================================================== --- branches/transforms/lib/matplotlib/collections.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/collections.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -16,7 +16,6 @@ import matplotlib.transforms as transforms import matplotlib.artist as artist import matplotlib.backend_bases as backend_bases -import matplotlib.nxutils as nxutils import matplotlib.path as path class Collection(artist.Artist, cm.ScalarMappable): Modified: branches/transforms/lib/matplotlib/colorbar.py =================================================================== --- branches/transforms/lib/matplotlib/colorbar.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/colorbar.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -21,7 +21,6 @@ import matplotlib.cm as cm import matplotlib.ticker as ticker import matplotlib.cbook as cbook -import matplotlib.transforms as transforms import matplotlib.lines as lines import matplotlib.patches as patches import matplotlib.collections as collections Modified: branches/transforms/lib/matplotlib/colors.py =================================================================== --- branches/transforms/lib/matplotlib/colors.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/colors.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -34,7 +34,6 @@ 'chartreuse' are supported. """ import re -import warnings import numpy as npy import matplotlib.numerix.npyma as ma import matplotlib.cbook as cbook Modified: branches/transforms/lib/matplotlib/contour.py =================================================================== --- branches/transforms/lib/matplotlib/contour.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/contour.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -10,7 +10,6 @@ import matplotlib._cntr as _cntr import matplotlib.path as path import matplotlib.ticker as ticker -import matplotlib.transforms as transforms import matplotlib.cm as cm import matplotlib.colors as colors import matplotlib.collections as collections Modified: branches/transforms/lib/matplotlib/dates.py =================================================================== --- branches/transforms/lib/matplotlib/dates.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/dates.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -76,8 +76,7 @@ DateIndexFormatter - date plots with implicit x indexing. """ -import sys, re, time, math, datetime -import locale +import re, time, math, datetime import pytz import matplotlib Modified: branches/transforms/lib/matplotlib/figure.py =================================================================== --- branches/transforms/lib/matplotlib/figure.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/figure.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -1,8 +1,6 @@ """ Figure class -- add docstring here! """ -import sys - import numpy as npy import artist @@ -11,20 +9,15 @@ from cbook import flatten, allequal, Stack, iterable, dedent import _image import colorbar as cbar -from colors import Normalize, rgb2hex from image import FigureImage from matplotlib import rcParams -from patches import Rectangle, Polygon +from patches import Rectangle from text import Text, _process_text_args from legend import Legend -from ticker import FormatStrFormatter from transforms import Affine2D, Bbox, BboxTransformTo, TransformedBbox -from cm import ScalarMappable -from contour import ContourSet from projections import projection_factory, get_projection_names, \ get_projection_class -import warnings class SubplotParams: """ Modified: branches/transforms/lib/matplotlib/finance.py =================================================================== --- branches/transforms/lib/matplotlib/finance.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/finance.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -15,8 +15,7 @@ import numpy as npy from matplotlib import verbose, get_configdir -from artist import Artist -from dates import date2num, num2date +from dates import date2num from matplotlib.cbook import Bunch from matplotlib.collections import LineCollection, PolyCollection from matplotlib.colors import colorConverter Modified: branches/transforms/lib/matplotlib/font_manager.py =================================================================== --- branches/transforms/lib/matplotlib/font_manager.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/font_manager.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -33,12 +33,12 @@ see license/LICENSE_TTFQUERY. """ -import os, sys, glob, shutil +import os, sys, glob from sets import Set import matplotlib from matplotlib import afm from matplotlib import ft2font -from matplotlib import rcParams, get_home, get_configdir +from matplotlib import rcParams, get_configdir from matplotlib.cbook import is_string_like from matplotlib.fontconfig_pattern import \ parse_fontconfig_pattern, generate_fontconfig_pattern Modified: branches/transforms/lib/matplotlib/fontconfig_pattern.py =================================================================== --- branches/transforms/lib/matplotlib/fontconfig_pattern.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/fontconfig_pattern.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -18,7 +18,7 @@ License : matplotlib license (PSF compatible) """ import re -from matplotlib.pyparsing import Literal, OneOrMore, ZeroOrMore, \ +from matplotlib.pyparsing import Literal, ZeroOrMore, \ Optional, Regex, StringEnd, ParseException, Suppress family_punc = r'\\\-:,' Modified: branches/transforms/lib/matplotlib/image.py =================================================================== --- branches/transforms/lib/matplotlib/image.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/image.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -4,7 +4,7 @@ """ from __future__ import division -import sys, os +import os import numpy as npy import numerix.ma as ma Modified: branches/transforms/lib/matplotlib/legend.py =================================================================== --- branches/transforms/lib/matplotlib/legend.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/legend.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -21,17 +21,17 @@ up the legend """ from __future__ import division -import copy, sys, warnings +import warnings import numpy as npy -from matplotlib import verbose, rcParams +from matplotlib import rcParams from artist import Artist -from cbook import enumerate, is_string_like, iterable, silent_list +from cbook import is_string_like, iterable, silent_list from font_manager import FontProperties from lines import Line2D from mlab import segments_intersect -from patches import Patch, Rectangle, RegularPolygon, Shadow, bbox_artist, draw_bbox +from patches import Patch, Rectangle, Shadow, bbox_artist from collections import LineCollection, RegularPolyCollection from text import Text from transforms import Affine2D, Bbox, BboxTransformTo Modified: branches/transforms/lib/matplotlib/lines.py =================================================================== --- branches/transforms/lib/matplotlib/lines.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/lines.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -6,14 +6,12 @@ # TODO: expose cap and join style attrs from __future__ import division -import sys, math, warnings - import numpy as npy import numerix.ma as ma from matplotlib import verbose import artist -from artist import Artist, setp +from artist import Artist from cbook import iterable, is_string_like, is_numlike from colors import colorConverter from path import Path Modified: branches/transforms/lib/matplotlib/mathtext.py =================================================================== --- branches/transforms/lib/matplotlib/mathtext.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/mathtext.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -124,29 +124,27 @@ """ from __future__ import division -import os, sys +import os from cStringIO import StringIO -from math import floor, ceil +from math import ceil from sets import Set import unicodedata from warnings import warn from numpy import inf, isinf -from matplotlib import verbose -from matplotlib.pyparsing import Literal, Word, OneOrMore, ZeroOrMore, \ - Combine, Group, Optional, Forward, NotAny, alphas, nums, alphanums, \ - StringStart, StringEnd, ParseFatalException, FollowedBy, Regex, \ - operatorPrecedence, opAssoc, ParseResults, Or, Suppress, oneOf, \ - ParseException, MatchFirst, NoMatch, Empty +from matplotlib.pyparsing import Combine, Group, Optional, Forward, \ + Literal, OneOrMore, ZeroOrMore, ParseException, Empty, \ + ParseResults, Suppress, oneOf, StringEnd, ParseFatalException, \ + FollowedBy, Regex from matplotlib.afm import AFM -from matplotlib.cbook import enumerate, iterable, Bunch, get_realpath_and_stat, \ +from matplotlib.cbook import Bunch, get_realpath_and_stat, \ is_string_like from matplotlib.ft2font import FT2Font, FT2Image, KERNING_DEFAULT, LOAD_DEFAULT, LOAD_NO_HINTING from matplotlib.font_manager import findfont, FontProperties from matplotlib._mathtext_data import latex_to_bakoma, \ - latex_to_standard, tex2uni, type12uni, tex2type1, uni2type1, \ + latex_to_standard, tex2uni, tex2type1, uni2type1, \ latex_to_cmex from matplotlib import get_data_path, rcParams Modified: branches/transforms/lib/matplotlib/mlab.py =================================================================== --- branches/transforms/lib/matplotlib/mlab.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/mlab.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -55,7 +55,7 @@ """ from __future__ import division -import sys, datetime, csv, warnings +import csv, warnings import numpy as npy Modified: branches/transforms/lib/matplotlib/patches.py =================================================================== --- branches/transforms/lib/matplotlib/patches.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/patches.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -6,10 +6,7 @@ import matplotlib.cbook as cbook import matplotlib.artist as artist import matplotlib.colors as colors -import matplotlib.lines as lines import matplotlib.transforms as transforms -import matplotlib.nxutils as nxutils -import matplotlib.mlab as mlab import matplotlib.artist as artist from matplotlib.path import Path Modified: branches/transforms/lib/matplotlib/proj3d.py =================================================================== --- branches/transforms/lib/matplotlib/proj3d.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/proj3d.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -9,7 +9,6 @@ from patches import Circle import numpy as npy import numpy.linalg as linalg -from math import sqrt def _hide_cross(a,b): """ Modified: branches/transforms/lib/matplotlib/scale.py =================================================================== --- branches/transforms/lib/matplotlib/scale.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/scale.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -1,12 +1,9 @@ import numpy as npy from numpy import ma -from numpy.linalg import inv -from ticker import NullFormatter, FixedFormatter, ScalarFormatter, \ - LogFormatter, LogFormatterMathtext -from ticker import NullLocator, FixedLocator, LinearLocator, LogLocator, \ - AutoLocator -from transforms import Transform, composite_transform_factory, IdentityTransform +from ticker import NullFormatter, ScalarFormatter, LogFormatterMathtext +from ticker import NullLocator, LogLocator, AutoLocator +from transforms import Transform, IdentityTransform class ScaleBase(object): def set_default_locators_and_formatters(self, axis): Modified: branches/transforms/lib/matplotlib/table.py =================================================================== --- branches/transforms/lib/matplotlib/table.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/table.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -20,14 +20,12 @@ """ from __future__ import division -import sys, warnings +import warnings -from matplotlib import verbose - import artist from artist import Artist from patches import Rectangle -from cbook import enumerate, is_string_like, flatten +from cbook import is_string_like from text import Text from transforms import Bbox Modified: branches/transforms/lib/matplotlib/texmanager.py =================================================================== --- branches/transforms/lib/matplotlib/texmanager.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/texmanager.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -33,7 +33,7 @@ """ -import copy, glob, md5, os, shutil, sys, warnings +import copy, glob, md5, os, shutil, sys import numpy as npy import matplotlib as mpl from matplotlib import rcParams Modified: branches/transforms/lib/matplotlib/text.py =================================================================== --- branches/transforms/lib/matplotlib/text.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/text.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -2,17 +2,15 @@ Figure and Axes text """ from __future__ import division -import re, math +import math import numpy as npy -import matplotlib -from matplotlib import verbose from matplotlib import cbook from matplotlib import rcParams import artist from artist import Artist -from cbook import enumerate, is_string_like, maxdict, is_numlike +from cbook import enumerate, is_string_like, maxdict from font_manager import FontProperties from patches import bbox_artist, YAArrow from transforms import Affine2D, Bbox Modified: branches/transforms/lib/matplotlib/ticker.py =================================================================== --- branches/transforms/lib/matplotlib/ticker.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/ticker.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -104,10 +104,9 @@ from __future__ import division -import sys, os, re, time, math, warnings +import math import numpy as npy -import matplotlib as mpl -from matplotlib import verbose, rcParams +from matplotlib import rcParams from matplotlib import cbook from matplotlib import transforms as mtransforms Modified: branches/transforms/lib/matplotlib/units.py =================================================================== --- branches/transforms/lib/matplotlib/units.py 2007-10-26 17:57:02 UTC (rev 4016) +++ branches/transforms/lib/matplotlib/units.py 2007-10-26 18:00:23 UTC (rev 4017) @@ -43,7 +43,6 @@ units.registry[datetime.date] = DateConverter() """ -import matplotlib from matplotlib.cbook import iterable, is_numlike class AxisInfo: This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <jd...@us...> - 2007-10-26 17:57:07
|
Revision: 4016 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4016&view=rev Author: jdh2358 Date: 2007-10-26 10:57:02 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added convolve workbook Modified Paths: -------------- trunk/py4science/workbook/main.pdf Modified: trunk/py4science/workbook/main.pdf =================================================================== --- trunk/py4science/workbook/main.pdf 2007-10-26 17:56:06 UTC (rev 4015) +++ trunk/py4science/workbook/main.pdf 2007-10-26 17:57:02 UTC (rev 4016) @@ -84,9 +84,15 @@ (1. Glass Moir\351 Patterns) endobj 61 0 obj -<< /S /GoTo /D [62 0 R /Fit ] >> +<< /S /GoTo /D (chapter.6) >> endobj -64 0 obj << +64 0 obj +(Chapter 6. Signal processing) +endobj +65 0 obj +<< /S /GoTo /D [66 0 R /Fit ] >> +endobj +68 0 obj << /Length 292 /Filter /FlateDecode >> @@ -95,24 +101,24 @@ \xEAT\x89H\x94\xA1\xA4\xA1\x8DJm\xB5\xFCz\xEC\x86VEb\xA8,\xD9:/\xDF\x99\xCAY0\xE0\x95Ҍ\x8C\x81`\x89X\xBB\xAD[e\xEC\xA1\xC2_\x8E\xD5(\x9F\x8BP\xE9\xB0B\xCD\xE4\xB9\xC9MS]M\x8Cch\xC1X\xAFY\xF3δR\xA0\x9D\xAF\x99G\xB5Ɋf\xF9\xC2gâ\xDD\xF5\xED\xE2CH\xE3\x89?\xB5}\x85Q|'\x90\xF7B"\x9F+c\xDBz~\x9B\xB6\xE5\xE6s\xE3J\xBC6SF\xD11\xA9P+:8\xF7q\xB4\x9C}f\x91\xACS<\xD0e |
From: <jd...@us...> - 2007-10-26 17:56:08
|
Revision: 4015 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4015&view=rev Author: jdh2358 Date: 2007-10-26 10:56:06 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added more convolution figs Modified Paths: -------------- trunk/py4science/workbook/scripts/convolve_explain.py Added Paths: ----------- trunk/py4science/workbook/fig/convolve_explain.eps trunk/py4science/workbook/fig/convolve_explain.png Added: trunk/py4science/workbook/fig/convolve_explain.eps =================================================================== --- trunk/py4science/workbook/fig/convolve_explain.eps (rev 0) +++ trunk/py4science/workbook/fig/convolve_explain.eps 2007-10-26 17:56:06 UTC (rev 4015) @@ -0,0 +1,6355 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Title: ../fig/convolve_explain.eps +%%Creator: matplotlib version 0.90.1, http://matplotlib.sourceforge.net/ +%%CreationDate: Fri Oct 26 12:55:41 2007 +%%Orientation: portrait +%%BoundingBox: 18 180 594 612 +%%EndComments +%%BeginProlog +/mpldict 7 dict def +mpldict begin +/m { moveto } bind def +/l { lineto } bind def +/r { rlineto } bind def +/box { +m +1 index 0 r +0 exch r +neg 0 r +closepath +} bind def +/clipbox { +box +clip +newpath +} bind def +/ellipse { +newpath +matrix currentmatrix 7 1 roll +translate +scale +0 0 1 5 3 roll arc +setmatrix +closepath +} bind def +%!PS-Adobe-3.0 Resource-Font +%%Title: Bitstream Vera Sans +%%Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. +%%Creator: Converted from TrueType by PPR +25 dict begin +/_d{bind def}bind def +/_m{moveto}_d +/_l{lineto}_d +/_cl{closepath eofill}_d +/_c{curveto}_d +/_sc{7 -1 roll{setcachedevice}{pop pop pop pop pop pop}ifelse}_d +/_e{exec}_d +/FontName /BitstreamVeraSans-Roman def +/PaintType 0 def +/FontMatrix[.001 0 0 .001 0 0]def +/FontBBox[-182 -235 1287 928]def +/FontType 3 def +/Encoding StandardEncoding def +/FontInfo 10 dict dup begin +/FamilyName (Bitstream Vera Sans) def +/FullName (Bitstream Vera Sans) def +/Notice (Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.) def +/Weight (Roman) def +/Version (Release 1.10) def +/ItalicAngle 0.0 def +/isFixedPitch false def +/UnderlinePosition -213 def +/UnderlineThickness 143 def +end readonly def +/CharStrings 21 dict dup begin +/space{318 0 0 0 0 0 _sc +}_d +/period{318 0 107 0 210 124 _sc +107 124 _m +210 124 _l +210 0 _l +107 0 _l +107 124 _l +_cl}_d +/zero{636 0 66 -13 570 742 _sc +318 664 _m +267 664 229 639 203 589 _c +177 539 165 464 165 364 _c +165 264 177 189 203 139 _c +229 89 267 64 318 64 _c +369 64 407 89 433 139 _c +458 189 471 264 471 364 _c +471 464 458 539 433 589 _c +407 639 369 664 318 664 _c +318 742 _m +399 742 461 709 505 645 _c +548 580 570 486 570 364 _c +570 241 548 147 505 83 _c +461 19 399 -13 318 -13 _c +236 -13 173 19 130 83 _c +87 147 66 241 66 364 _c +66 486 87 580 130 645 _c +173 709 236 742 318 742 _c +_cl}_d +/one{636 0 110 0 544 729 _sc +124 83 _m +285 83 _l +285 639 _l +110 604 _l +110 694 _l +284 729 _l +383 729 _l +383 83 _l +544 83 _l +544 0 _l +124 0 _l +124 83 _l +_cl}_d +/two{{636 0 73 0 536 742 _sc +192 83 _m +536 83 _l +536 0 _l +73 0 _l +73 83 _l +110 121 161 173 226 239 _c +290 304 331 346 348 365 _c +380 400 402 430 414 455 _c +426 479 433 504 433 528 _c +433 566 419 598 392 622 _c +365 646 330 659 286 659 _c +255 659 222 653 188 643 _c +154 632 117 616 78 594 _c +78 694 _l +118 710 155 722 189 730 _c +223 738 255 742 284 742 _c +359 742 419 723 464 685 _c +509 647 532 597 532 534 _c +532 504 526 475 515 449 _c +504 422 484 390 454 354 _c +446 344 420 317 376 272 _c +332 227 271 164 192 83 _c +_cl}_e}_d +/three{{636 0 76 -13 556 742 _sc +406 393 _m +453 383 490 362 516 330 _c +542 298 556 258 556 212 _c +556 140 531 84 482 45 _c +432 6 362 -13 271 -13 _c +240 -13 208 -10 176 -4 _c +144 1 110 10 76 22 _c +76 117 _l +103 101 133 89 166 81 _c +198 73 232 69 268 69 _c +330 69 377 81 409 105 _c +441 129 458 165 458 212 _c +458 254 443 288 413 312 _c +383 336 341 349 287 349 _c +202 349 _l +202 430 _l +291 430 _l +339 430 376 439 402 459 _c +428 478 441 506 441 543 _c +441 580 427 609 401 629 _c +374 649 336 659 287 659 _c +260 659 231 656 200 650 _c +169 644 135 635 98 623 _c +98 711 _l +135 721 170 729 203 734 _c +235 739 266 742 296 742 _c +}_e{370 742 429 725 473 691 _c +517 657 539 611 539 553 _c +539 513 527 479 504 451 _c +481 423 448 403 406 393 _c +_cl}_e}_d +/four{636 0 49 0 580 729 _sc +378 643 _m +129 254 _l +378 254 _l +378 643 _l +352 729 _m +476 729 _l +476 254 _l +580 254 _l +580 172 _l +476 172 _l +476 0 _l +378 0 _l +378 172 _l +49 172 _l +49 267 _l +352 729 _l +_cl}_d +/five{{636 0 77 -13 549 729 _sc +108 729 _m +495 729 _l +495 646 _l +198 646 _l +198 467 _l +212 472 227 476 241 478 _c +255 480 270 482 284 482 _c +365 482 429 459 477 415 _c +525 370 549 310 549 234 _c +549 155 524 94 475 51 _c +426 8 357 -13 269 -13 _c +238 -13 207 -10 175 -6 _c +143 -1 111 6 77 17 _c +77 116 _l +106 100 136 88 168 80 _c +199 72 232 69 267 69 _c +323 69 368 83 401 113 _c +433 143 450 183 450 234 _c +450 284 433 324 401 354 _c +368 384 323 399 267 399 _c +241 399 214 396 188 390 _c +162 384 135 375 108 363 _c +108 729 _l +_cl}_e}_d +/six{{636 0 70 -13 573 742 _sc +330 404 _m +286 404 251 388 225 358 _c +199 328 186 286 186 234 _c +186 181 199 139 225 109 _c +251 79 286 64 330 64 _c +374 64 409 79 435 109 _c +461 139 474 181 474 234 _c +474 286 461 328 435 358 _c +409 388 374 404 330 404 _c +526 713 _m +526 623 _l +501 635 476 644 451 650 _c +425 656 400 659 376 659 _c +310 659 260 637 226 593 _c +192 549 172 482 168 394 _c +187 422 211 444 240 459 _c +269 474 301 482 336 482 _c +409 482 467 459 509 415 _c +551 371 573 310 573 234 _c +573 159 550 99 506 54 _c +462 9 403 -13 330 -13 _c +246 -13 181 19 137 83 _c +92 147 70 241 70 364 _c +70 479 97 571 152 639 _c +206 707 280 742 372 742 _c +}_e{396 742 421 739 447 735 _c +472 730 498 723 526 713 _c +_cl}_e}_d +/eight{{636 0 68 -13 568 742 _sc +318 346 _m +271 346 234 333 207 308 _c +180 283 167 249 167 205 _c +167 161 180 126 207 101 _c +234 76 271 64 318 64 _c +364 64 401 76 428 102 _c +455 127 469 161 469 205 _c +469 249 455 283 429 308 _c +402 333 365 346 318 346 _c +219 388 _m +177 398 144 418 120 447 _c +96 476 85 511 85 553 _c +85 611 105 657 147 691 _c +188 725 245 742 318 742 _c +390 742 447 725 489 691 _c +530 657 551 611 551 553 _c +551 511 539 476 515 447 _c +491 418 459 398 417 388 _c +464 377 501 355 528 323 _c +554 291 568 251 568 205 _c +568 134 546 80 503 43 _c +459 5 398 -13 318 -13 _c +237 -13 175 5 132 43 _c +89 80 68 134 68 205 _c +68 251 81 291 108 323 _c +134 355 171 377 219 388 _c +}_e{183 544 _m +183 506 194 476 218 455 _c +242 434 275 424 318 424 _c +360 424 393 434 417 455 _c +441 476 453 506 453 544 _c +453 582 441 611 417 632 _c +393 653 360 664 318 664 _c +275 664 242 653 218 632 _c +194 611 183 582 183 544 _c +_cl}_e}_d +/e{{615 0 55 -13 562 560 _sc +562 296 _m +562 252 _l +149 252 _l +153 190 171 142 205 110 _c +238 78 284 62 344 62 _c +378 62 412 66 444 74 _c +476 82 509 95 541 113 _c +541 28 _l +509 14 476 3 442 -3 _c +408 -9 373 -13 339 -13 _c +251 -13 182 12 131 62 _c +80 112 55 181 55 268 _c +55 357 79 428 127 481 _c +175 533 241 560 323 560 _c +397 560 455 536 498 489 _c +540 441 562 377 562 296 _c +472 322 _m +471 371 457 410 431 440 _c +404 469 368 484 324 484 _c +274 484 234 469 204 441 _c +174 413 156 373 152 322 _c +472 322 _l +_cl}_e}_d +/i{278 0 94 0 184 760 _sc +94 547 _m +184 547 _l +184 0 _l +94 0 _l +94 547 _l +94 760 _m +184 760 _l +184 646 _l +94 646 _l +94 760 _l +_cl}_d +/l{278 0 94 0 184 760 _sc +94 760 _m +184 760 _l +184 0 _l +94 0 _l +94 760 _l +_cl}_d +/m{{974 0 91 0 889 560 _sc +520 442 _m +542 482 569 511 600 531 _c +631 550 668 560 711 560 _c +767 560 811 540 842 500 _c +873 460 889 403 889 330 _c +889 0 _l +799 0 _l +799 327 _l +799 379 789 418 771 444 _c +752 469 724 482 686 482 _c +639 482 602 466 575 435 _c +548 404 535 362 535 309 _c +535 0 _l +445 0 _l +445 327 _l +445 379 435 418 417 444 _c +398 469 369 482 331 482 _c +285 482 248 466 221 435 _c +194 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +201 495 226 520 255 536 _c +283 552 317 560 357 560 _c +397 560 430 550 458 530 _c +486 510 506 480 520 442 _c +}_e{_cl}_e}_d +/n{634 0 91 0 549 560 _sc +549 330 _m +549 0 _l +459 0 _l +459 327 _l +459 379 448 417 428 443 _c +408 469 378 482 338 482 _c +289 482 251 466 223 435 _c +195 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +202 494 227 519 257 535 _c +286 551 320 560 358 560 _c +420 560 468 540 500 501 _c +532 462 549 405 549 330 _c +_cl}_d +/o{612 0 55 -13 557 560 _sc +306 484 _m +258 484 220 465 192 427 _c +164 389 150 338 150 273 _c +150 207 163 156 191 118 _c +219 80 257 62 306 62 _c +354 62 392 80 420 118 _c +448 156 462 207 462 273 _c +462 337 448 389 420 427 _c +392 465 354 484 306 484 _c +306 560 _m +384 560 445 534 490 484 _c +534 433 557 363 557 273 _c +557 183 534 113 490 63 _c +445 12 384 -13 306 -13 _c +227 -13 165 12 121 63 _c +77 113 55 183 55 273 _c +55 363 77 433 121 484 _c +165 534 227 560 306 560 _c +_cl}_d +/p{{635 0 91 -207 580 560 _sc +181 82 _m +181 -207 _l +91 -207 _l +91 547 _l +181 547 _l +181 464 _l +199 496 223 520 252 536 _c +281 552 316 560 356 560 _c +422 560 476 533 518 481 _c +559 428 580 359 580 273 _c +580 187 559 117 518 65 _c +476 13 422 -13 356 -13 _c +316 -13 281 -5 252 10 _c +223 25 199 49 181 82 _c +487 273 _m +487 339 473 390 446 428 _c +418 466 381 485 334 485 _c +286 485 249 466 222 428 _c +194 390 181 339 181 273 _c +181 207 194 155 222 117 _c +249 79 286 61 334 61 _c +381 61 418 79 446 117 _c +473 155 487 207 487 273 _c +_cl}_e}_d +/r{411 0 91 0 411 560 _sc +411 463 _m +401 469 390 473 378 476 _c +366 478 353 480 339 480 _c +288 480 249 463 222 430 _c +194 397 181 350 181 288 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +199 495 224 520 254 536 _c +284 552 321 560 365 560 _c +371 560 378 559 386 559 _c +393 558 401 557 411 555 _c +411 463 _l +_cl}_d +/s{{521 0 54 -13 472 560 _sc +443 531 _m +443 446 _l +417 458 391 468 364 475 _c +336 481 308 485 279 485 _c +234 485 200 478 178 464 _c +156 450 145 430 145 403 _c +145 382 153 366 169 354 _c +185 342 217 330 265 320 _c +296 313 _l +360 299 405 279 432 255 _c +458 230 472 195 472 151 _c +472 100 452 60 412 31 _c +372 1 316 -13 246 -13 _c +216 -13 186 -10 154 -5 _c +122 0 89 8 54 20 _c +54 113 _l +87 95 120 82 152 74 _c +184 65 216 61 248 61 _c +290 61 323 68 346 82 _c +368 96 380 117 380 144 _c +380 168 371 187 355 200 _c +339 213 303 226 247 238 _c +216 245 _l +160 257 119 275 95 299 _c +70 323 58 356 58 399 _c +58 450 76 490 112 518 _c +148 546 200 560 268 560 _c +}_e{301 560 332 557 362 552 _c +391 547 418 540 443 531 _c +_cl}_e}_d +/t{392 0 27 0 368 702 _sc +183 702 _m +183 547 _l +368 547 _l +368 477 _l +183 477 _l +183 180 _l +183 135 189 106 201 94 _c +213 81 238 75 276 75 _c +368 75 _l +368 0 _l +276 0 _l +206 0 158 13 132 39 _c +106 65 93 112 93 180 _c +93 477 _l +27 477 _l +27 547 _l +93 547 _l +93 702 _l +183 702 _l +_cl}_d +/u{634 0 85 -13 543 547 _sc +85 216 _m +85 547 _l +175 547 _l +175 219 _l +175 167 185 129 205 103 _c +225 77 255 64 296 64 _c +344 64 383 79 411 110 _c +439 141 453 183 453 237 _c +453 547 _l +543 547 _l +543 0 _l +453 0 _l +453 84 _l +431 50 405 26 377 10 _c +348 -5 315 -13 277 -13 _c +214 -13 166 6 134 45 _c +101 83 85 140 85 216 _c +_cl}_d +end readonly def + +/BuildGlyph + {exch begin + CharStrings exch + 2 copy known not{pop /.notdef}if + true 3 1 roll get exec + end}_d + +/BuildChar { + 1 index /Encoding get exch get + 1 index /BuildGlyph get exec +}_d + +FontName currentdict end definefont pop +%%EOF +end +%%EndProlog +mpldict begin +18 180 translate +576 432 0 0 clipbox +gsave +1.000 setgray +1.000 setlinewidth +0 setlinejoin +2 setlinecap +[] 0 setdash +0 0 m +0 432 l +576 432 l +576 0 l +closepath +gsave +fill +grestore +stroke +grestore +gsave +0.000 setgray +72 287.153 m +72 388.8 l +518.4 388.8 l +518.4 287.153 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +2.000 setlinewidth +gsave +446.4 101.647 72 287.153 clipbox +72 287.153 m +72.4464 293.73 l +72.8928 299.92 l +73.3392 305.744 l +73.7856 311.219 l +74.232 316.364 l +74.6784 321.196 l +75.1248 325.729 l +75.5712 329.98 l +76.0176 333.962 l +76.464 337.69 l +76.9104 341.176 l +77.3568 344.433 l +77.8032 347.472 l +78.2496 350.305 l +78.696 352.943 l +79.1424 355.395 l +79.5888 357.671 l +80.0352 359.78 l +80.4816 361.731 l +80.928 363.532 l +81.3744 365.192 l +81.8208 366.717 l +82.2672 368.114 l +82.7136 369.391 l +83.16 370.554 l +83.6064 371.608 l +84.0528 372.56 l +84.4992 373.415 l +84.9456 374.179 l +85.392 374.855 l +85.8384 375.45 l +86.2848 375.967 l +86.7312 376.412 l +87.1776 376.786 l +87.624 377.096 l +88.0704 377.344 l +88.5168 377.534 l +88.9632 377.668 l +89.4096 377.751 l +89.856 377.786 l +90.3024 377.774 l +90.7488 377.719 l +91.1952 377.623 l +91.6416 377.489 l +92.088 377.319 l +92.5344 377.115 l +92.9808 376.879 l +93.4272 376.613 l +93.8736 376.32 l +94.32 376 l +94.7664 375.656 l +95.2128 375.289 l +95.6592 374.9 l +96.1056 374.492 l +96.552 374.065 l +96.9984 373.621 l +97.4448 373.16 l +97.8912 372.685 l +98.3376 372.196 l +98.784 371.694 l +99.2304 371.18 l +99.6768 370.655 l +100.123 370.121 l +100.57 369.577 l +101.016 369.025 l +101.462 368.465 l +101.909 367.899 l +102.355 367.326 l +102.802 366.748 l +103.248 366.165 l +103.694 365.577 l +104.141 364.986 l +104.587 364.391 l +105.034 363.793 l +105.48 363.193 l +105.926 362.591 l +106.373 361.988 l +106.819 361.383 l +107.266 360.778 l +107.712 360.172 l +108.158 359.566 l +108.605 358.96 l +109.051 358.354 l +109.498 357.749 l +109.944 357.146 l +110.39 356.543 l +110.837 355.942 l +111.283 355.342 l +111.73 354.744 l +112.176 354.149 l +112.622 353.555 l +113.069 352.964 l +113.515 352.375 l +113.962 351.789 l +114.408 351.206 l +114.854 350.625 l +115.301 350.048 l +115.747 349.474 l +116.194 348.902 l +116.64 348.335 l +117.086 347.77 l +117.533 347.209 l +117.979 346.652 l +118.426 346.098 l +118.872 345.548 l +119.318 345.001 l +119.765 344.458 l +120.211 343.919 l +120.658 343.384 l +121.104 342.853 l +121.55 342.326 l +121.997 341.802 l +122.443 341.283 l +122.89 340.767 l +123.336 340.256 l +123.782 339.748 l +124.229 339.245 l +124.675 338.745 l +125.122 338.25 l +125.568 337.759 l +126.014 337.272 l +126.461 336.788 l +126.907 336.309 l +127.354 335.834 l +127.8 335.363 l +128.246 334.896 l +128.693 334.433 l +129.139 333.974 l +129.586 333.519 l +130.032 333.068 l +130.478 332.621 l +130.925 332.178 l +131.371 331.739 l +131.818 331.304 l +132.264 330.873 l +132.71 330.446 l +133.157 330.022 l +133.603 329.603 l +134.05 329.187 l +134.496 328.775 l +134.942 328.367 l +135.389 327.962 l +135.835 327.562 l +136.282 327.165 l +136.728 326.772 l +137.174 326.382 l +137.621 325.996 l +138.067 325.614 l +138.514 325.235 l +138.96 324.86 l +139.406 324.489 l +139.853 324.121 l +140.299 323.756 l +140.746 323.395 l +141.192 323.037 l +141.638 322.683 l +142.085 322.332 l +142.531 321.985 l +142.978 321.641 l +143.424 321.3 l +143.87 320.962 l +144.317 320.628 l +144.763 320.297 l +145.21 319.969 l +145.656 319.644 l +146.102 319.323 l +146.549 319.004 l +146.995 318.689 l +147.442 318.376 l +147.888 318.067 l +148.334 317.761 l +148.781 317.458 l +149.227 317.157 l +149.674 316.86 l +150.12 316.565 l +150.566 316.274 l +151.013 315.985 l +151.459 315.699 l +151.906 315.416 l +152.352 315.136 l +152.798 314.858 l +153.245 314.583 l +153.691 314.311 l +154.138 314.041 l +154.584 313.774 l +155.03 313.51 l +155.477 313.249 l +155.923 312.989 l +156.37 312.733 l +156.816 312.479 l +157.262 312.227 l +157.709 311.978 l +158.155 311.732 l +158.602 311.488 l +159.048 311.246 l +159.494 311.007 l +159.941 310.77 l +160.387 310.535 l +160.834 310.303 l +161.28 310.073 l +161.726 309.845 l +162.173 309.619 l +162.619 309.396 l +163.066 309.175 l +163.512 308.956 l +163.958 308.739 l +164.405 308.525 l +164.851 308.312 l +165.298 308.102 l +165.744 307.894 l +166.19 307.688 l +166.637 307.483 l +167.083 307.281 l +167.53 307.081 l +167.976 306.883 l +168.422 306.687 l +168.869 306.493 l +169.315 306.3 l +169.762 306.11 l +170.208 305.921 l +170.654 305.735 l +171.101 305.55 l +171.547 305.367 l +171.994 305.186 l +172.44 305.007 l +172.886 304.829 l +173.333 304.653 l +173.779 304.479 l +174.226 304.307 l +174.672 304.136 l +175.118 303.967 l +175.565 303.8 l +176.011 303.635 l +176.458 303.471 l +176.904 303.308 l +177.35 303.148 l +177.797 302.988 l +178.243 302.831 l +178.69 302.675 l +179.136 302.521 l +179.582 302.368 l +180.029 302.216 l +180.475 302.067 l +180.922 301.918 l +181.368 301.771 l +181.814 301.626 l +182.261 301.482 l +182.707 301.339 l +183.154 301.198 l +183.6 301.058 l +184.046 300.92 l +184.493 300.783 l +184.939 300.648 l +185.386 300.513 l +185.832 300.38 l +186.278 300.249 l +186.725 300.119 l +187.171 299.99 l +187.618 299.862 l +188.064 299.735 l +188.51 299.61 l +188.957 299.486 l +189.403 299.364 l +189.85 299.242 l +190.296 299.122 l +190.742 299.003 l +191.189 298.885 l +191.635 298.768 l +192.082 298.653 l +192.528 298.538 l +192.974 298.425 l +193.421 298.313 l +193.867 298.202 l +194.314 298.092 l +194.76 297.983 l +195.206 297.875 l +195.653 297.768 l +196.099 297.663 l +196.546 297.558 l +196.992 297.455 l +197.438 297.352 l +197.885 297.251 l +198.331 297.15 l +198.778 297.051 l +199.224 296.952 l +199.67 296.855 l +200.117 296.758 l +200.563 296.663 l +201.01 296.568 l +201.456 296.474 l +201.902 296.382 l +202.349 296.29 l +202.795 296.199 l +203.242 296.109 l +203.688 296.02 l +204.134 295.932 l +204.581 295.844 l +205.027 295.758 l +205.474 295.672 l +205.92 295.587 l +206.366 295.503 l +206.813 295.42 l +207.259 295.338 l +207.706 295.257 l +208.152 295.176 l +208.598 295.096 l +209.045 295.017 l +209.491 294.939 l +209.938 294.861 l +210.384 294.785 l +210.83 294.709 l +211.277 294.634 l +211.723 294.559 l +212.17 294.486 l +212.616 294.413 l +213.062 294.34 l +213.509 294.269 l +213.955 294.198 l +214.402 294.128 l +214.848 294.059 l +215.294 293.99 l +215.741 293.922 l +216.187 293.854 l +216.634 293.788 l +217.08 293.722 l +217.526 293.656 l +217.973 293.592 l +218.419 293.528 l +218.866 293.464 l +219.312 293.401 l +219.758 293.339 l +220.205 293.278 l +220.651 293.217 l +221.098 293.156 l +221.544 293.097 l +221.99 293.037 l +222.437 292.979 l +222.883 292.921 l +223.33 292.864 l +223.776 292.807 l +224.222 292.751 l +224.669 292.695 l +225.115 292.64 l +225.562 292.585 l +226.008 292.531 l +226.454 292.478 l +226.901 292.425 l +227.347 292.372 l +227.794 292.32 l +228.24 292.269 l +228.686 292.218 l +229.133 292.167 l +229.579 292.118 l +230.026 292.068 l +230.472 292.019 l +230.918 291.971 l +231.365 291.923 l +231.811 291.875 l +232.258 291.828 l +232.704 291.782 l +233.15 291.736 l +233.597 291.69 l +234.043 291.645 l +234.49 291.6 l +234.936 291.556 l +235.382 291.512 l +235.829 291.469 l +236.275 291.426 l +236.722 291.383 l +237.168 291.341 l +237.614 291.3 l +238.061 291.258 l +238.507 291.218 l +238.954 291.177 l +239.4 291.137 l +239.846 291.097 l +240.293 291.058 l +240.739 291.019 l +241.186 290.981 l +241.632 290.943 l +242.078 290.905 l +242.525 290.868 l +242.971 290.831 l +243.418 290.794 l +243.864 290.758 l +244.31 290.722 l +244.757 290.687 l +245.203 290.651 l +245.65 290.617 l +246.096 290.582 l +246.542 290.548 l +246.989 290.514 l +247.435 290.481 l +247.882 290.448 l +248.328 290.415 l +248.774 290.382 l +249.221 290.35 l +249.667 290.319 l +250.114 290.287 l +250.56 290.256 l +251.006 290.225 l +251.453 290.194 l +251.899 290.164 l +252.346 290.134 l +252.792 290.104 l +253.238 290.075 l +253.685 290.046 l +254.131 290.017 l +254.578 289.989 l +255.024 289.961 l +255.47 289.933 l +255.917 289.905 l +256.363 289.878 l +256.81 289.85 l +257.256 289.824 l +257.702 289.797 l +258.149 289.771 l +258.595 289.745 l +259.042 289.719 l +259.488 289.693 l +259.934 289.668 l +260.381 289.643 l +260.827 289.618 l +261.274 289.594 l +261.72 289.569 l +262.166 289.545 l +262.613 289.522 l +263.059 289.498 l +263.506 289.475 l +263.952 289.452 l +264.398 289.429 l +264.845 289.406 l +265.291 289.384 l +265.738 289.361 l +266.184 289.34 l +266.63 289.318 l +267.077 289.296 l +267.523 289.275 l +267.97 289.254 l +268.416 289.233 l +268.862 289.212 l +269.309 289.192 l +269.755 289.171 l +270.202 289.151 l +270.648 289.131 l +271.094 289.112 l +271.541 289.092 l +271.987 289.073 l +272.434 289.054 l +272.88 289.035 l +273.326 289.016 l +273.773 288.998 l +274.219 288.979 l +274.666 288.961 l +275.112 288.943 l +275.558 288.925 l +276.005 288.908 l +276.451 288.89 l +276.898 288.873 l +277.344 288.856 l +277.79 288.839 l +278.237 288.822 l +278.683 288.806 l +279.13 288.789 l +279.576 288.773 l +280.022 288.757 l +280.469 288.741 l +280.915 288.725 l +281.362 288.709 l +281.808 288.694 l +282.254 288.678 l +282.701 288.663 l +283.147 288.648 l +283.594 288.633 l +284.04 288.619 l +284.486 288.604 l +284.933 288.59 l +285.379 288.575 l +285.826 288.561 l +286.272 288.547 l +286.718 288.533 l +287.165 288.52 l +287.611 288.506 l +288.058 288.492 l +288.504 288.479 l +288.95 288.466 l +289.397 288.453 l +289.843 288.44 l +290.29 288.427 l +290.736 288.414 l +291.182 288.402 l +291.629 288.389 l +292.075 288.377 l +292.522 288.365 l +292.968 288.353 l +293.414 288.341 l +293.861 288.329 l +294.307 288.317 l +294.754 288.306 l +295.2 288.294 l +295.646 288.283 l +296.093 288.272 l +296.539 288.261 l +296.986 288.25 l +297.432 288.239 l +297.878 288.228 l +298.325 288.217 l +298.771 288.207 l +299.218 288.196 l +299.664 288.186 l +300.11 288.176 l +300.557 288.165 l +301.003 288.155 l +301.45 288.145 l +301.896 288.135 l +302.342 288.126 l +302.789 288.116 l +303.235 288.106 l +303.682 288.097 l +304.128 288.088 l +304.574 288.078 l +305.021 288.069 l +305.467 288.06 l +305.914 288.051 l +306.36 288.042 l +306.806 288.033 l +307.253 288.024 l +307.699 288.016 l +308.146 288.007 l +308.592 287.999 l +309.038 287.99 l +309.485 287.982 l +309.931 287.974 l +310.378 287.965 l +310.824 287.957 l +311.27 287.949 l +311.717 287.941 l +312.163 287.934 l +312.61 287.926 l +313.056 287.918 l +313.502 287.91 l +313.949 287.903 l +314.395 287.895 l +314.842 287.888 l +315.288 287.881 l +315.734 287.874 l +316.181 287.866 l +316.627 287.859 l +317.074 287.852 l +317.52 287.845 l +317.966 287.838 l +318.413 287.832 l +318.859 287.825 l +319.306 287.818 l +319.752 287.812 l +320.198 287.805 l +320.645 287.798 l +321.091 287.792 l +321.538 287.786 l +321.984 287.779 l +322.43 287.773 l +322.877 287.767 l +323.323 287.761 l +323.77 287.755 l +324.216 287.749 l +324.662 287.743 l +325.109 287.737 l +325.555 287.731 l +326.002 287.725 l +326.448 287.72 l +326.894 287.714 l +327.341 287.709 l +327.787 287.703 l +328.234 287.698 l +328.68 287.692 l +329.126 287.687 l +329.573 287.681 l +330.019 287.676 l +330.466 287.671 l +330.912 287.666 l +331.358 287.661 l +331.805 287.656 l +332.251 287.651 l +332.698 287.646 l +333.144 287.641 l +333.59 287.636 l +334.037 287.631 l +334.483 287.626 l +334.93 287.622 l +335.376 287.617 l +335.822 287.612 l +336.269 287.608 l +336.715 287.603 l +337.162 287.599 l +337.608 287.594 l +338.054 287.59 l +338.501 287.586 l +338.947 287.581 l +339.394 287.577 l +339.84 287.573 l +340.286 287.569 l +340.733 287.565 l +341.179 287.56 l +341.626 287.556 l +342.072 287.552 l +342.518 287.548 l +342.965 287.544 l +343.411 287.541 l +343.858 287.537 l +344.304 287.533 l +344.75 287.529 l +345.197 287.525 l +345.643 287.522 l +346.09 287.518 l +346.536 287.514 l +346.982 287.511 l +347.429 287.507 l +347.875 287.504 l +348.322 287.5 l +348.768 287.497 l +349.214 287.493 l +349.661 287.49 l +350.107 287.487 l +350.554 287.483 l +351 287.48 l +351.446 287.477 l +351.893 287.474 l +352.339 287.47 l +352.786 287.467 l +353.232 287.464 l +353.678 287.461 l +354.125 287.458 l +354.571 287.455 l +355.018 287.452 l +355.464 287.449 l +355.91 287.446 l +356.357 287.443 l +356.803 287.44 l +357.25 287.437 l +357.696 287.434 l +358.142 287.432 l +358.589 287.429 l +359.035 287.426 l +359.482 287.423 l +359.928 287.421 l +360.374 287.418 l +360.821 287.415 l +361.267 287.413 l +361.714 287.41 l +362.16 287.408 l +362.606 287.405 l +363.053 287.403 l +363.499 287.4 l +363.946 287.398 l +364.392 287.395 l +364.838 287.393 l +365.285 287.39 l +365.731 287.388 l +366.178 287.386 l +366.624 287.383 l +367.07 287.381 l +367.517 287.379 l +367.963 287.377 l +368.41 287.374 l +368.856 287.372 l +369.302 287.37 l +369.749 287.368 l +370.195 287.366 l +370.642 287.364 l +371.088 287.361 l +371.534 287.359 l +371.981 287.357 l +372.427 287.355 l +372.874 287.353 l +373.32 287.351 l +373.766 287.349 l +374.213 287.347 l +374.659 287.345 l +375.106 287.344 l +375.552 287.342 l +375.998 287.34 l +376.445 287.338 l +376.891 287.336 l +377.338 287.334 l +377.784 287.332 l +378.23 287.331 l +378.677 287.329 l +379.123 287.327 l +379.57 287.325 l +380.016 287.324 l +380.462 287.322 l +380.909 287.32 l +381.355 287.319 l +381.802 287.317 l +382.248 287.315 l +382.694 287.314 l +383.141 287.312 l +383.587 287.311 l +384.034 287.309 l +384.48 287.307 l +384.926 287.306 l +385.373 287.304 l +385.819 287.303 l +386.266 287.301 l +386.712 287.3 l +387.158 287.298 l +387.605 287.297 l +388.051 287.296 l +388.498 287.294 l +388.944 287.293 l +389.39 287.291 l +389.837 287.29 l +390.283 287.289 l +390.73 287.287 l +391.176 287.286 l +391.622 287.285 l +392.069 287.283 l +392.515 287.282 l +392.962 287.281 l +393.408 287.279 l +393.854 287.278 l +394.301 287.277 l +394.747 287.276 l +395.194 287.274 l +395.64 287.273 l +396.086 287.272 l +396.533 287.271 l +396.979 287.27 l +397.426 287.269 l +397.872 287.267 l +398.318 287.266 l +398.765 287.265 l +399.211 287.264 l +399.658 287.263 l +400.104 287.262 l +400.55 287.261 l +400.997 287.26 l +401.443 287.259 l +401.89 287.258 l +402.336 287.256 l +402.782 287.255 l +403.229 287.254 l +403.675 287.253 l +404.122 287.252 l +404.568 287.251 l +405.014 287.25 l +405.461 287.249 l +405.907 287.249 l +406.354 287.248 l +406.8 287.247 l +407.246 287.246 l +407.693 287.245 l +408.139 287.244 l +408.586 287.243 l +409.032 287.242 l +409.478 287.241 l +409.925 287.24 l +410.371 287.239 l +410.818 287.239 l +411.264 287.238 l +411.71 287.237 l +412.157 287.236 l +412.603 287.235 l +413.05 287.234 l +413.496 287.234 l +413.942 287.233 l +414.389 287.232 l +414.835 287.231 l +415.282 287.23 l +415.728 287.23 l +416.174 287.229 l +416.621 287.228 l +417.067 287.227 l +417.514 287.227 l +417.96 287.226 l +418.406 287.225 l +418.853 287.224 l +419.299 287.224 l +419.746 287.223 l +420.192 287.222 l +420.638 287.222 l +421.085 287.221 l +421.531 287.22 l +421.978 287.22 l +422.424 287.219 l +422.87 287.218 l +423.317 287.218 l +423.763 287.217 l +424.21 287.216 l +424.656 287.216 l +425.102 287.215 l +425.549 287.215 l +425.995 287.214 l +426.442 287.213 l +426.888 287.213 l +427.334 287.212 l +427.781 287.212 l +428.227 287.211 l +428.674 287.21 l +429.12 287.21 l +429.566 287.209 l +430.013 287.209 l +430.459 287.208 l +430.906 287.208 l +431.352 287.207 l +431.798 287.206 l +432.245 287.206 l +432.691 287.205 l +433.138 287.205 l +433.584 287.204 l +434.03 287.204 l +434.477 287.203 l +434.923 287.203 l +435.37 287.202 l +435.816 287.202 l +436.262 287.201 l +436.709 287.201 l +437.155 287.2 l +437.602 287.2 l +438.048 287.199 l +438.494 287.199 l +438.941 287.199 l +439.387 287.198 l +439.834 287.198 l +440.28 287.197 l +440.726 287.197 l +441.173 287.196 l +441.619 287.196 l +442.066 287.195 l +442.512 287.195 l +442.958 287.195 l +443.405 287.194 l +443.851 287.194 l +444.298 287.193 l +444.744 287.193 l +445.19 287.193 l +445.637 287.192 l +446.083 287.192 l +446.53 287.191 l +446.976 287.191 l +447.422 287.191 l +447.869 287.19 l +448.315 287.19 l +448.762 287.19 l +449.208 287.189 l +449.654 287.189 l +450.101 287.188 l +450.547 287.188 l +450.994 287.188 l +451.44 287.187 l +451.886 287.187 l +452.333 287.187 l +452.779 287.186 l +453.226 287.186 l +453.672 287.186 l +454.118 287.185 l +454.565 287.185 l +455.011 287.185 l +455.458 287.184 l +455.904 287.184 l +456.35 287.184 l +456.797 287.184 l +457.243 287.183 l +457.69 287.183 l +458.136 287.183 l +458.582 287.182 l +459.029 287.182 l +459.475 287.182 l +459.922 287.181 l +460.368 287.181 l +460.814 287.181 l +461.261 287.181 l +461.707 287.18 l +462.154 287.18 l +462.6 287.18 l +463.046 287.18 l +463.493 287.179 l +463.939 287.179 l +464.386 287.179 l +464.832 287.178 l +465.278 287.178 l +465.725 287.178 l +466.171 287.178 l +466.618 287.177 l +467.064 287.177 l +467.51 287.177 l +467.957 287.177 l +468.403 287.177 l +468.85 287.176 l +469.296 287.176 l +469.742 287.176 l +470.189 287.176 l +470.635 287.175 l +471.082 287.175 l +471.528 287.175 l +471.974 287.175 l +472.421 287.174 l +472.867 287.174 l +473.314 287.174 l +473.76 287.174 l +474.206 287.174 l +474.653 287.173 l +475.099 287.173 l +475.546 287.173 l +475.992 287.173 l +476.438 287.173 l +476.885 287.172 l +477.331 287.172 l +477.778 287.172 l +478.224 287.172 l +478.67 287.172 l +479.117 287.171 l +479.563 287.171 l +480.01 287.171 l +480.456 287.171 l +480.902 287.171 l +481.349 287.171 l +481.795 287.17 l +482.242 287.17 l +482.688 287.17 l +483.134 287.17 l +483.581 287.17 l +484.027 287.17 l +484.474 287.169 l +484.92 287.169 l +485.366 287.169 l +485.813 287.169 l +486.259 287.169 l +486.706 287.169 l +487.152 287.168 l +487.598 287.168 l +488.045 287.168 l +488.491 287.168 l +488.938 287.168 l +489.384 287.168 l +489.83 287.168 l +490.277 287.167 l +490.723 287.167 l +491.17 287.167 l +491.616 287.167 l +492.062 287.167 l +492.509 287.167 l +492.955 287.167 l +493.402 287.166 l +493.848 287.166 l +494.294 287.166 l +494.741 287.166 l +495.187 287.166 l +495.634 287.166 l +496.08 287.166 l +496.526 287.165 l +496.973 287.165 l +497.419 287.165 l +497.866 287.165 l +498.312 287.165 l +498.758 287.165 l +499.205 287.165 l +499.651 287.165 l +500.098 287.165 l +500.544 287.164 l +500.99 287.164 l +501.437 287.164 l +501.883 287.164 l +502.33 287.164 l +502.776 287.164 l +503.222 287.164 l +503.669 287.164 l +504.115 287.164 l +504.562 287.163 l +505.008 287.163 l +505.454 287.163 l +505.901 287.163 l +506.347 287.163 l +506.794 287.163 l +507.24 287.163 l +507.686 287.163 l +508.133 287.163 l +508.579 287.163 l +509.026 287.162 l +509.472 287.162 l +509.918 287.162 l +510.365 287.162 l +510.811 287.162 l +511.258 287.162 l +511.704 287.162 l +512.15 287.162 l +512.597 287.162 l +513.043 287.162 l +513.49 287.162 l +513.936 287.161 l +514.382 287.161 l +514.829 287.161 l +515.275 287.161 l +515.722 287.161 l +516.168 287.161 l +516.614 287.161 l +517.061 287.161 l +517.507 287.161 l +517.954 287.161 l +stroke +grestore +/BitstreamVeraSans-Roman findfont +12.000 scalefont +setfont +68.977 274.075 m +0 0.172 rmoveto +(0) show +0.500 setlinewidth +0 setlinecap +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +161.28 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +161.28 388.8 o +158.499 274.247 m +(2) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +250.56 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +250.56 388.8 o +247.372 274.403 m +(4) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +339.84 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +339.84 388.8 o +336.824 274.075 m +0 0.172 rmoveto +(6) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +429.12 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +429.12 388.8 o +426.12 274.075 m +0 0.172 rmoveto +(8) show +511.814 274.075 m +0 0.172 rmoveto +(10) show +50.5 282.614 m +0 0.172 rmoveto +(0.0) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 304.094 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 304.094 o +50.812 299.555 m +0 0.172 rmoveto +(0.1) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 321.035 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 321.035 o +50.906 316.496 m +0 0.172 rmoveto +(0.2) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 337.976 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 337.976 o +50.672 333.437 m +0 0.172 rmoveto +(0.3) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 354.918 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 354.918 o +50.375 350.379 m +0 0.172 rmoveto +(0.4) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 371.859 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 371.859 o +50.75 367.32 m +0 0.172 rmoveto +(0.5) show +50.469 384.261 m +0 0.172 rmoveto +(0.6) show +45.375 285.383 m +gsave +90 rotate +0 2.5 rmoveto +(impulse response) show +grestore +1.000 setlinewidth +2 setlinecap +72 287.153 m +518.4 287.153 l +518.4 388.8 l +72 388.8 l +72 287.153 l +stroke +gsave +72 165.176 m +72 266.824 l +518.4 266.824 l +518.4 165.176 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +gsave +0.000 0.000 1.000 setrgbcolor +2.000 setlinewidth +gsave +446.4 101.6 72 165.2 clipbox +116.64 165.176 m +116.64 221.647 l +117.979 221.647 l +117.979 165.176 l +closepath +gsave +fill +grestore +stroke +grestore +grestore +gsave +0.000 0.502 0.000 setrgbcolor +gsave +446.4 101.6 72 165.2 clipbox +205.92 165.176 m +205.92 261.176 l +207.259 261.176 l +207.259 165.176 l +closepath +gsave +fill +grestore +stroke +grestore +grestore +gsave +1.000 0.000 0.000 setrgbcolor +gsave +446.4 101.6 72 165.2 clipbox +473.76 165.176 m +473.76 199.059 l +475.099 199.059 l +475.099 165.176 l +closepath +gsave +fill +grestore +stroke +grestore +grestore +0.000 0.000 1.000 setrgbcolor +1.000 setlinewidth +gsave +446.4 101.647 72 165.176 clipbox +72 165.176 m +72.4464 165.176 l +72.8928 165.176 l +73.3392 165.176 l +73.7856 165.176 l +74.232 165.176 l +74.6784 165.176 l +75.1248 165.176 l +75.5712 165.176 l +76.0176 165.176 l +76.464 165.176 l +76.9104 165.176 l +77.3568 165.176 l +77.8032 165.176 l +78.2496 165.176 l +78.696 165.176 l +79.1424 165.176 l +79.5888 165.176 l +80.0352 165.176 l +80.4816 165.176 l +80.928 165.176 l +81.3744 165.176 l +81.8208 165.176 l +82.2672 165.176 l +82.7136 165.176 l +83.16 165.176 l +83.6064 165.176 l +84.0528 165.176 l +84.4992 165.176 l +84.9456 165.176 l +85.392 165.176 l +85.8384 165.176 l +86.2848 165.176 l +86.7312 165.176 l +87.1776 165.176 l +87.624 165.176 l +88.0704 165.176 l +88.5168 165.176 l +88.9632 165.176 l +89.4096 165.176 l +89.856 165.176 l +90.3024 165.176 l +90.7488 165.176 l +91.1952 165.176 l +91.6416 165.176 l +92.088 165.176 l +92.5344 165.176 l +92.9808 165.176 l +93.4272 165.176 l +93.8736 165.176 l +94.32 165.176 l +94.7664 165.176 l +95.2128 165.176 l +95.6592 165.176 l +96.1056 165.176 l +96.552 165.176 l +96.9984 165.176 l +97.4448 165.176 l +97.8912 165.176 l +98.3376 165.176 l +98.784 165.176 l +99.2304 165.176 l +99.6768 165.176 l +100.123 165.176 l +100.57 165.176 l +101.016 165.176 l +101.462 165.176 l +101.909 165.176 l +102.355 165.176 l +102.802 165.176 l +103.248 165.176 l +103.694 165.176 l +104.141 165.176 l +104.587 165.176 l +105.034 165.176 l +105.48 165.176 l +105.926 165.176 l +106.373 165.176 l +106.819 165.176 l +107.266 165.176 l +107.712 165.176 l +108.158 165.176 l +108.605 165.176 l +109.051 165.176 l +109.498 165.176 l +109.944 165.176 l +110.39 165.176 l +110.837 165.176 l +111.283 165.176 l +111.73 165.176 l +112.176 165.176 l +112.622 165.176 l +113.069 165.176 l +113.515 165.176 l +113.962 165.176 l +114.408 165.176 l +114.854 165.176 l +115.301 165.176 l +115.747 165.176 l +116.194 165.176 l +116.64 165.176 l +117.086 167.369 l +117.533 169.432 l +117.979 171.373 l +118.426 173.199 l +118.872 174.914 l +119.318 176.524 l +119.765 178.035 l +120.211 179.452 l +120.658 180.779 l +121.104 182.022 l +121.55 183.184 l +121.997 184.27 l +122.443 185.283 l +122.89 186.227 l +123.336 187.106 l +123.782 187.924 l +124.229 188.682 l +124.675 189.385 l +125.122 190.036 l +125.568 190.636 l +126.014 191.189 l +126.461 191.698 l +126.907 192.164 l +127.354 192.589 l +127.8 192.977 l +128.246 193.328 l +128.693 193.646 l +129.139 193.931 l +129.586 194.185 l +130.032 194.411 l +130.478 194.609 l +130.925 194.781 l +131.371 194.929 l +131.818 195.054 l +132.264 195.158 l +132.71 195.24 l +133.157 195.303 l +133.603 195.348 l +134.05 195.376 l +134.496 195.387 l +134.942 195.383 l +135.389 195.365 l +135.835 195.333 l +136.282 195.288 l +136.728 195.232 l +137.174 195.164 l +137.621 195.085 l +138.067 194.997 l +138.514 194.899 l +138.96 194.792 l +139.406 194.677 l +139.853 194.555 l +140.299 194.426 l +140.746 194.289 l +141.192 194.147 l +141.638 193.999 l +142.085 193.846 l +142.531 193.687 l +142.978 193.524 l +143.424 193.357 l +143.87 193.185 l +144.317 193.011 l +144.763 192.832 l +145.21 192.651 l +145.656 192.467 l +146.102 192.281 l +146.549 192.092 l +146.995 191.901 l +147.442 191.708 l +147.888 191.514 l +148.334 191.318 l +148.781 191.121 l +149.227 190.922 l +149.674 190.723 l +150.12 190.523 l +150.566 190.323 l +151.013 190.121 l +151.459 189.92 l +151.906 189.718 l +152.352 189.516 l +152.798 189.314 l +153.245 189.112 l +153.691 188.91 l +154.138 188.709 l +154.584 188.507 l +155.03 188.306 l +155.477 188.106 l +155.923 187.906 l +156.37 187.707 l +156.816 187.508 l +157.262 187.311 l +157.709 187.113 l +158.155 186.917 l +158.602 186.722 l +159.048 186.527 l +159.494 186.334 l +159.941 186.141 l +160.387 185.95 l +160.834 185.76 l +161.28 185.57 l +161.726 185.382 l +162.173 185.195 l +162.619 185.009 l +163.066 184.825 l +163.512 184.641 l +163.958 184.459 l +164.405 184.278 l +164.851 184.099 l +165.298 183.92 l +165.744 183.743 l +166.19 183.567 l +166.637 183.393 l +167.083 183.22 l +167.53 183.048 l +167.976 182.877 l +168.422 182.708 l +168.869 182.54 l +169.315 182.374 l +169.762 182.209 l +170.208 182.045 l +170.654 181.883 l +171.101 181.722 l +171.547 181.562 l +171.994 181.404 l +172.44 181.247 l +172.886 181.091 l +173.333 180.937 l +173.779 180.784 l +174.226 180.632 l +174.672 180.482 l +175.118 180.333 l +175.565 180.185 l +176.011 180.039 l +176.458 179.894 l +176.904 179.75 l +177.35 179.607 l +177.797 179.466 l +178.243 179.326 l +178.69 179.188 l +179.136 179.05 l +179.582 178.914 l +180.029 178.78 l +180.475 178.646 l +180.922 178.514 l +181.368 178.383 l +181.814 178.253 l +182.261 178.124 l +182.707 177.997 l +183.154 177.871 l +183.6 177.746 l +184.046 177.622 l +184.493 177.499 l +184.939 177.377 l +185.386 177.257 l +185.832 177.138 l +186.278 177.02 l +186.725 176.903 l +187.171 176.787 l +187.618 176.672 l +188.064 176.559 l +188.51 176.446 l +188.957 176.335 l +189.403 176.224 l +189.85 176.115 l +190.296 176.007 l +190.742 175.9 l +191.189 175.794 l +191.635 175.688 l +192.082 175.584 l +192.528 175.481 l +192.974 175.379 l +193.421 175.278 l +193.867 175.178 l +194.314 175.079 l +194.76 174.981 l +195.206 174.883 l +195.653 174.787 l +196.099 174.692 l +196.546 174.597 l +196.992 174.504 l +197.438 174.411 l +197.885 174.32 l +198.331 174.229 l +198.778 174.139 l +199.224 174.05 l +199.67 173.962 l +200.117 173.875 l +200.563 173.789 l +201.01 173.703 l +201.456 173.618 l +201.902 173.535 l +202.349 173.452 l +202.795 173.369 l +203.242 173.288 l +203.688 173.207 l +204.134 173.128 l +204.581 173.049 l +205.027 172.97 l +205.474 172.893 l +205.92 172.816 l +206.366 172.74 l +206.813 172.665 l +207.259 172.591 l +207.706 172.517 l +208.152 172.444 l +208.598 172.372 l +209.045 172.3 l +209.491 172.23 l +209.938 172.16 l +210.384 172.09 l +210.83 172.021 l +211.277 171.953 l +211.723 171.886 l +212.17 171.819 l +212.616 171.753 l +213.062 171.688 l +213.509 171.623 l +213.955 171.559 l +214.402 171.495 l +214.848 171.433 l +215.294 171.37 l +215.741 171.309 l +216.187 171.248 l +216.634 171.187 l +217.08 171.128 l +217.526 171.069 l +217.973 171.01 l +218.419 170.952 l +218.866 170.894 l +219.312 170.838 l +219.758 170.781 l +220.205 170.726 l +220.651 170.67 l +221.098 170.616 l +221.544 170.562 l +221.99 170.508 l +222.437 170.455 l +222.883 170.402 l +223.33 170.35 l +223.776 170.299 l +224.222 170.248 l +224.669 170.198 l +225.115 170.148 l +225.562 170.098 l +226.008 170.049 l +226.454 170.001 l +226.901 169.953 l +227.347 169.905 l +227.794 169.858 l +228.24 169.812 l +228.686 169.766 l +229.133 169.72 l +229.579 169.675 l +230.026 169.63 l +230.472 169.586 l +230.918 169.542 l +231.365 169.498 l +231.811 169.455 l +232.258 169.413 l +232.704 169.371 l +233.15 169.329 l +233.597 169.288 l +234.043 169.247 l +234.49 169.206 l +234.936 169.166 l +235.382 169.126 l +235.829 169.087 l +236.275 169.048 l +236.722 169.01 l +237.168 168.972 l +237.614 168.934 l +238.061 168.896 l +238.507 168.859 l +238.954 168.823 l +239.4 168.786 l +239.846 168.751 l +240.293 168.715 l +240.739 168.68 l +241.186 168.645 l +241.632 168.61 l +242.078 168.576 l +242.525 168.542 l +242.971 168.509 l +243.418 168.476 l +243.864 168.443 l +244.31 168.41 l +244.757 168.378 l +245.203 168.346 l +245.65 168.315 l +246.096 168.284 l +246.542 168.253 l +246.989 168.222 l +247.435 168.192 l +247.882 168.162 l +248.328 168.132 l +248.774 168.103 l +249.221 168.074 l +249.667 168.045 l +250.114 168.016 l +250.56 167.988 l +251.006 167.96 l +251.453 167.932 l +251.899 167.905 l +252.346 167.878 l +252.792 167.851 l +253.238 167.824 l +253.685 167.798 l +254.131 167.772 l +254.578 167.746 l +255.024 167.72 l +255.47 167.695 l +255.917 167.67 l +256.363 167.645 l +256.81 167.621 l +257.256 167.596 l +257.702 167.572 l +258.149 167.548 l +258.595 167.525 l +259.042 167.501 l +259.488 167.478 l +259.934 167.455 l +260.381 167.433 l +260.827 167.41 l +261.274 167.388 l +261.72 167.366 l +262.166 167.344 l +262.613 167.323 l +263.059 167.301 l +263.506 167.28 l +263.952 167.259 l +264.398 167.239 l +264.845 167.218 l +265.291 167.198 l +265.738 167.178 l +266.184 167.158 l +266.63 167.138 l +267.077 167.118 l +267.523 167.099 l +267.97 167.08 l +268.416 167.061 l +268.862 167.042 l +269.309 167.024 l +269.755 167.005 l +270.202 166.987 l +270.648 166.969 l +271.094 166.951 l +271.541 166.934 l +271.987 166.916 l +272.434 166.899 l +272.88 166.882 l +273.326 166.865 l +273.773 166.848 l +274.219 166.831 l +274.666 166.815 l +275.112 166.799 l +275.558 166.782 l +276.005 166.766 l +276.451 166.751 l +276.898 166.735 l +277.344 166.719 l +277.79 166.704 l +278.237 166.689 l +278.683 166.674 l +279.13 166.659 l +279.576 166.644 l +280.022 166.63 l +280.469 166.615 l +280.915 166.601 l +281.362 166.587 l +281.808 166.573 l +282.254 166.559 l +282.701 166.545 l +283.147 166.531 l +283.594 166.518 l +284.04 166.505 l +284.486 166.491 l +284.933 166.478 l +285.379 166.465 l +285.826 166.452 l +286.272 166.44 l +286.718 166.427 l +287.165 166.415 l +287.611 166.402 l +288.058 166.39 l +288.504 166.378 l +288.95 166.366 l +289.397 166.354 l +289.843 166.343 l +290.29 166.331 l +290.736 166.32 l +291.182 166.308 l +291.629 166.297 l +292.075 166.286 l +292.522 166.275 l +292.968 166.264 l +293.414 166.253 l +293.861 166.242 l +294.307 166.232 l +294.754 166.221 l +295.2 166.211 l +295.646 166.2 l +296.093 166.19 l +296.539 166.18 l +296.986 166.17 l +297.432 166.16 l +297.878 166.151 l +298.325 166.141 l +298.771 166.131 l +299.218 166.122 l +299.664 166.112 l +300.11 166.103 l +300.557 166.094 l +301.003 166.085 l +301.45 166.076 l +301.896 166.067 l +302.342 166.058 l +302.789 166.049 l +303.235 166.04 l +303.682 166.032 l +304.128 166.023 l +304.574 166.015 l +305.021 166.007 l +305.467 165.998 l +305.914 165.99 l +306.36 165.982 l +306.806 165.974 l +307.253 165.966 l +307.699 165.958 l +308.146 165.95 l +308.592 165.943 l +309.038 165.935 l +309.485 165.928 l +309.931 165.92 l +310.378 165.913 l +310.824 165.905 l +311.27 165.898 l +311.717 165.891 l +312.163 165.884 l +312.61 165.877 l +313.056 165.87 l +313.502 165.863 l +313.949 165.856 l +314.395 165.849 l +314.842 165.843 l +315.288 165.836 l +315.734 165.829 l +316.181 165.823 l +316.627 165.816 l +317.074 165.81 l +317.52 165.804 l +317.966 165.798 l +318.413 165.791 l +318.859 165.785 l +319.306 165.779 l +319.752 165.773 l +320.198 165.767 l +320.645 165.761 l +321.091 165.756 l +321.538 165.75 l +321.984 165.744 l +322.43 165.738 l +322.877 165.733 l +323.323 165.727 l +323.77 165.722 l +324.216 165.716 l +324.662 165.711 l +325.109 165.706 l +325.555 165.7 l +326.002 165.695 l +326.448 165.69 l +326.894 165.685 l +327.341 165.68 l +327.787 165.675 l +328.234 165.67 l +328.68 165.665 l +329.126 165.66 l +329.573 165.655 l +330.019 165.651 l +330.466 165.646 l +330.912 165.641 l +331.358 165.637 l +331.805 165.632 l +332.251 165.627 l +332.698 165.623 l +333.144 165.619 l +333.59 165.614 l +334.037 165.61 l +334.483 165.605 l +334.93 165.601 l +335.376 165.597 l +335.822 165.593 l +336.269 165.589 l +336.715 165.585 l +337.162 165.58 l +337.608 165.576 l +338.054 165.572 l +338.501 165.569 l +338.947 165.565 l +339.394 165.561 l +339.84 165.557 l +340.286 165.553 l +340.733 165.549 l +341.179 165.546 l +341.626 165.542 l +342.072 165.538 l +342.518 165.535 l +342.965 165.531 l +343.411 165.528 l +343.858 165.524 l +344.304 165.521 l +344.75 165.517 l +345.197 165.514 l +345.643 165.511 l +346.09 165.507 l +346.536 165.504 l +346.982 165.501 l +347.429 165.497 l +347.875 165.494 l +348.322 165.491 l +348.768 165.488 l +349.214 165.485 l +349.661 165.482 l +350.107 165.479 l +350.554 165.476 l +351 165.473 l +351.446 165.47 l +351.893 165.467 l +352.339 165.464 l +352.786 165.461 l +353.232 165.458 l +353.678 165.456 l +354.125 165.453 l +354.571 165.45 l +355.018 165.447 l +355.464 165.445 l +355.91 165.442 l +356.357 165.439 l +356.803 165.437 l +357.25 165.434 l +357.696 165.432 l +358.142 165.429 l +358.589 165.426 l +359.035 165.424 l +359.482 165.422 l +359.928 165.419 l +360.374 165.417 l +360.821 165.414 l +361.267 165.412 l +361.714 165.41 l +362.16 165.407 l +362.606 165.405 l +363.053 165.403 l +363.499 165.4 l +363.946 165.398 l +364.392 165.396 l +364.838 165.394 l +365.285 165.392 l +365.731 165.39 l +366.178 165.387 l +366.624 165.385 l +367.07 165.383 l +367.517 165.381 l +367.963 165.379 l +368.41 165.377 l +368.856 165.375 l +369.302 165.373 l +369.749 165.371 l +370.195 165.369 l +370.642 165.367 l +371.088 165.365 l +371.534 165.364 l +371.981 165.362 l +372.427 165.36 l +372.874 165.358 l +373.32 165.356 l +373.766 165.354 l +374.213 165.353 l +374.659 165.351 l +375.106 165.349 l +375.552 165.347 l +375.998 165.346 l +376.445 165.344 l +376.891 165.342 l +377.338 165.341 l +377.784 165.339 l +378.23 165.337 l +378.677 165.336 l +379.123 165.334 l +379.57 165.333 l +380.016 165.331 l +380.462 165.33 l +380.909 165.328 l +381.355 165.327 l +381.802 165.325 l +382.248 165.324 l +382.694 165.322 l +383.141 165.321 l +383.587 165.319 l +384.034 165.318 l +384.48 165.316 l +384.926 165.315 l +385.373 165.314 l +385.819 165.312 l +386.266 165.311 l +386.712 165.31 l +387.158 165.308 l +387.605 165.307 l +388.051 165.306 l +388.498 165.304 l +388.944 165.303 l +389.39 165.302 l +389.837 165.301 l +390.283 165.299 l +390.73 165.298 l +391.176 165.297 l +391.622 165.296 l +392.069 165.295 l +392.515 165.293 l +392.962 165.292 l +393.408 165.291 l +393.854 165.29 l +394.301 165.289 l +394.747 165.288 l +395.194 165.287 l +395.64 165.285 l +396.086 165.284 l +396.533 165.283 l +396.979 165.282 l +397.426 165.281 l +397.872 165.28 l +398.318 165.279 l +398.765 165.278 l +399.211 165.277 l +399.658 165.276 l +400.104 165.275 l +400.55 165.274 l +400.997 165.273 l +401.443 165.272 l +401.89 165.271 l +402.336 165.27 l +402.782 165.269 l +403.229 165.268 l +403.675 165.268 l +404.122 165.267 l +404.568 165.266 l +405.014 165.265 l +405.461 165.264 l +405.907 165.263 l +406.354 165.262 l +406.8 165.261 l +407.246 165.261 l +407.693 165.26 l +408.139 165.259 l +408.586 165.258 l +409.032 165.257 l +409.478 165.256 l +409.925 165.256 l +410.371 165.255 l +410.818 165.254 l +411.264 165.253 l +411.71 165.253 l +412.157 165.252 l +412.603 165.251 l +413.05 165.25 l +413.496 165.25 l +413.942 165.249 l +414.389 165.248 l +414.835 165.247 l +415.282 165.247 l +415.728 165.246 l +416.174 165.245 l +416.621 165.245 l +417.067 165.244 l +417.514 165.243 l +417.96 165.243 l +418.406 165.242 l +418.853 165.241 l +419.299 165.241 l +419.746 165.24 l +420.192 165.239 l +420.638 165.239 l +421.085 165.238 l +421.531 165.238 l +421.978 165.237 l +422.424 165.236 l +422.87 165.236 l +423.317 165.235 l +423.763 165.235 l +424.21 165.234 l +424.656 165.233 l +425.102 165.233 l +425.549 165.232 l +425.995 165.232 l +426.442 165.231 l +426.888 165.231 l +427.334 165.23 l +427.781 165.23 l +428.227 165.229 l +428.674 165.228 l +429.12 165.228 l +429.566 165.227 l +430.013 165.227 l +430.459 165.226 l +430.906 165.226 l +431.352 165.225 l +431.798 165.225 l +432.245 165.224 l +432.691 165.224 l +433.138 165.224 l +433.584 165.223 l +434.03 165.223 l +434.477 165.222 l +434.923 165.222 l +435.37 165.221 l +435.816 165.221 l +436.262 165.22 l +436.709 165.22 l +437.155 165.219 l +437.602 165.219 l +438.048 165.219 l +438.494 165.218 l +438.941 165.218 l +439.387 165.217 l +439.834 165.217 l +440.28 165.217 l +440.726 165.216 l +441.173 165.216 l +441.619 165.215 l +442.066 165.215 l +442.512 165.215 l +442.958 165.214 l +443.405 165.214 l +443.851 165.213 l +444.298 165.213 l +444.744 165.213 l +445.19 165.212 l +445.637 165.212 l +446.083 165.212 l +446.53 165.211 l +446.976 165.211 l +447.422 165.211 l +447.869 165.21 l +448.315 165.21 l +448.762 165.21 l +449.208 165.209 l +449.654 165.209 l +450.101 165.209 l +450.547 165.208 l +450.994 165.208 l +451.44 165.208 l +451.886 165.207 l +452.333 165.207 l +452.779 165.207 l +453.226 165.206 l +453.672 165.206 l +454.118 165.206 l +454.565 165.206 l +455.011 165.205 l +455.458 165.205 l +455.904 165.205 l +456.35 165.204 l +456.797 165.204 l +457.243 165.204 l +457.69 165.204 l +458.136 165.203 l +458.582 165.203 l +459.029 165.203 l +459.475 165.203 l +459.922 165.202 l +460.368 165.202 l +460.814 165.202 l +461.261 165.202 l +461.707 165.201 l +462.154 165.201 l +462.6 165.201 l +463.046 165.201 l +463.493 165.2 l +463.939 165.2 l +464.386 165.2 l +464.832 165.2 l +465.278 165.199 l +465.725 165.199 l +466.171 165.199 l +466.618 165.199 l +467.064 165.198 l +467.51 165.198 l +467.957 165.198 l +468.403 165.198 l +468.85 165.198 l +469.296 165.197 l +469.742 165.197 l +470.189 165.197 l +470.635 165.197 l +471.082 165.197 l +471.528 165.196 l +471.974 165.196 l +472.421 165.196 l +472.867 165.196 l +473.314 165.196 l +473.76 165.195 l +474.206 165.195 l +474.653 165.195 l +475.099 165.195 l +475.546 165.195 l +475.992 165.194 l +476.438 165.194 l +476.885 165.194 l +477.331 165.194 l +477.778 165.194 l +478.224 165.194 l +478.67 165.193 l +479.117 165.193 l +479.563 165.193 l +480.01 165.193 l +480.456 165.193 l +480.902 165.193 l +481.349 165.192 l +481.795 165.192 l +482.242 165.192 l +482.688 165.192 l +483.134 165.192 l +483.581 165.192 l +484.027 165.192 l +484.474 165.191 l +484.92 165.191 l +485.366 165.191 l +485.813 165.191 l +486.259 165.191 l +486.706 165.191 l +487.152 165.191 l +487.598 165.19 l +488.045 165.19 l +488.491 165.19 l +488.938 165.19 l +489.384 165.19 l +489.83 165.19 l +490.277 165.19 l +490.723 165.189 l +491.17 165.189 l +491.616 165.189 l +492.062 165.189 l +492.509 165.189 l +492.955 165.189 l +493.402 165.189 l +493.848 165.189 l +494.294 165.188 l +494.741 165.188 l +495.187 165.188 l +495.634 165.188 l +496.08 165.188 l +496.526 165.188 l +496.973 165.188 l +497.419 165.188 l +497.866 165.188 l +498.312 165.187 l +498.758 165.187 l +499.205 165.187 l +499.651 165.187 l +500.098 165.187 l +500.544 165.187 l +500.99 165.187 l +501.437 165.187 l +501.883 165.187 l +502.33 165.186 l +502.776 165.186 l +503.222 165.186 l +503.669 165.186 l +504.115 165.186 l +504.562 165.186 l +505.008 165.186 l +505.454 165.186 l +505.901 165.186 l +506.347 165.186 l +506.794 165.186 l +507.24 165.185 l +507.686 165.185 l +508.133 165.185 l +508.579 165.185 l +509.026 165.185 l +509.472 165.185 l +509.918 165.185 l +510.365 165.185 l +510.811 165.185 l +511.258 165.185 l +511.704 165.185 l +512.15 165.184 l +512.597 165.184 l +513.043 165.184 l +513.49 165.184 l +513.936 165.184 l +514.382 165.184 l +514.829 165.184 l +515.275 165.184 l +515.722 165.184 l +516.168 165.184 l +516.614 165.184 l +517.061 165.184 l +517.507 165.184 l +517.954 165.184 l +stroke +grestore +0.000 0.502 0.000 setrgbcolor +gsave +446.4 101.647 72 165.176 clipbox +72 165.176 m +72.4464 165.176 l +72.8928 165.176 l +73.3392 165.176 l +73.7856 165.176 l +74.232 165.176 l +74.6784 165.176 l +75.1248 165.176 l +75.5712 165.176 l +76.0176 165.176 l +76.464 165.176 l +76.9104 165.176 l +77.3568 165.176 l +77.8032 165.176 l +78.2496 165.176 l +78.696 165.176 l +79.1424 165.176 l +79.5888 165.176 l +80.0352 165.176 l +80.4816 165.176 l +80.928 165.176 l +81.3744 165.176 l +81.8208 165.176 l +82.2672 165.176 l +82.7136 165.176 l +83.16 165.176 l +83.6064 165.176 l +84.0528 165.176 l +84.4992 165.176 l +84.9456 165.176 l +85.392 165.176 l +85.8384 165.176 l +86.2848 165.176 l +86.7312 165.176 l +87.1776 165.176 l +87.624 165.176 l +88.0704 165.176 l +88.5168 165.176 l +88.9632 165.176 l +89.4096 165.176 l +89.856 165.176 l +90.3024 165.176 l +90.7488 165.176 l +91.1952 165.176 l +91.6416 165.176 l +92.088 165.176 l +92.5344 165.176 l +92.9808 165.176 l +93.4272 165.176 l +93.8736 165.176 l +94.32 165.176 l +94.7664 165.176 l +95.2128 165.176 l +95.6592 165.176 l +96.1056 165.176 l +96.552 165.176 l +96.9984 165.176 l +97.4448 165.176 l +97.8912 165.176 l +98.3376 165.176 l +98.784 165.176 l +99.2304 165.176 l +99.6768 165.176 l +100.123 165.176 l +100.57 165.176 l +101.016 165.176 l +101.462 165.176 l +101.909 165.176 l +102.355 165.176 l +102.802 165.176 l +103.248 165.176 l +103.694 165.176 l +104.141 165.176 l +104.587 165.176 l +105.034 165.176 l +105.48 165.176 l +105.926 165.176 l +106.373 165.176 l +106.819 165.176 l +107.266 165.176 l +107.712 165.176 l +108.158 165.176 l +108.605 165.176 l +109.051 165.176 l +109.498 165.176 l +109.944 165.176 l +110.39 165.176 l +110.837 165.176 l +111.283 165.176 l +111.73 165.176 l +112.176 165.176 l +112.622 165.176 l +113.069 165.176 l +113.515 165.176 l +113.962 165.176 l +114.408 165.176 l +114.854 165.176 l +115.301 165.176 l +115.747 165.176 l +116.194 165.176 l +116.64 165.176 l +117.086 165.176 l +117.533 165.176 l +117.979 165.176 l +118.426 165.176 l +118.872 165.176 l +119.318 165.176 l +119.765 165.176 l +120.211 165.176 l +120.658 165.176 l +121.104 165.176 l +121.55 165.176 l +121.997 165.176 l +122.443 165.176 l +122.89 165.176 l +123.336 165.176 l +123.782 165.176 l +124.229 165.176 l +124.675 165.176 l +125.122 165.176 l +125.568 165.176 l +126.014 165.176 l +126.461 165.176 l +126.907 165.176 l +127.354 165.176 l +127.8 165.176 l +128.246 165.176 l +128.693 165.176 l +129.139 165.176 l +129.586 165.176 l +130.032 165.176 l +130.478 165.176 l +130.925 165.176 l +131.371 165.176 l +131.818 165.176 l +132.264 165.176 l +132.71 165.176 l +133.157 165.176 l +133.603 165.176 l +134.05 165.176 l +134.496 165.176 l +134.942 165.176 l +135.389 165.176 l +135.835 165.176 l +136.282 165.176 l +136.728 165.176 l +137.174 165.176 l +137.621 165.176 l +138.067 165.176 l +138.514 165.176 l +138.96 165.176 l +139.406 165.176 l +139.853 165.176 l +140.299 165.176 l +140.746 165.176 l +141.192 165.176 l +141.638 165.176 l +142.085 165.176 l +142.531 165.176 l +142.978 165.176 l +143.424 165.176 l +143.87 165.176 l +144.317 165.176 l +144.763 165.176 l +145.21 165.176 l +145.656 165.176 l +146.102 165.176 l +146.549 165.176 l +146.995 165.176 l +147.442 165.176 l +147.888 165.176 l +148.334 165.176 l +148.781 165.176 l +149.227 165.176 l +149.674 165.176 l +150.12 165.176 l +150.566 165.176 l +151.013 165.176 l +151.459 165.176 l +151.906 165.176 l +152.352 165.176 l +152.798 165.176 l +153.245 165.176 l +153.691 165.176 l +154.138 165.176 l +154.584 165.176 l +155.03 165.176 l +155.477 165.176 l +155.923 165.176 l +156.37 165.176 l +156.816 165.176 l +157.262 165.176 l +157.709 165.176 l +158.155 165.176 l +158.602 165.176 l +159.048 165.176 l +159.494 165.176 l +159.941 165.176 l +160.387 165.176 l +160.834 165.176 l +161.28 165.176 l +161.726 165.176 l +162.173 165.176 l +162.619 165.176 l +163.066 165.176 l +163.512 165.176 l +163.958 165.176 l +164.405 165.176 l +164.851 165.176 l +165.298 165.176 l +165.744 165.176 l +166.19 165.176 l +166.637 165.176 l +167.083 165.176 l +167.53 165.176 l +167.976 165.176 l +168.422 165.176 l +168.869 165.176 l +169.315 165.176 l +169.762 165.176 l +170.208 165.176 l +170.654 165.176 l +171.101 165.176 l +171.547 165.176 l +171.994 165.176 l +172.44 165.176 l +172.886 165.176 l +173.333 165.176 l +173.779 165.176 l +174.226 165.176 l +174.672 165.176 l +175.118 165.176 l +175.565 165.176 l +176.011 165.176 l +176.458 165.176 l +176.904 165.176 l +177.35 165.176 l +177.797 165.176 l +178.243 165.176 l +178.69 165.176 l +179.136 165.176 l +179.582 165.176 l +180.029 165.176 l +180.475 165.176 l +180.922 165.176 l +181.368 165.176 l +181.814 165.176 l +182.261 165.176 l +182.707 165.176 l +183.154 165.176 l +183.6 165.176 l +184.046 165.176 l +184.493 165.176 l +184.939 165.176 l +185.386 165.176 l +185.832 165.176 l +186.278 165.176 l +186.725 165.176 l +187.171 165.176 l +187.618 165.176 l +188.064 165.176 l +188.51 165.176 l +188.957 165.176 l +189.403 165.176 l +189.85 165.176 l +190.296 165.176 l +190.742 165.176 l +191.189 165.176 l +191.635 165.176 l +192.082 165.176 l +192.528 165.176 l +192.974 165.176 l +193.421 165.176 l +193.867 165.176 l +194.314 165.176 l +194.76 165.176 l +195.206 165.176 l +195.653 165.176 l +196.099 165.176 l +196.546 165.176 l +196.992 165.176 l +197.438 165.176 l +197.885 165.176 l +198.331 165.176 l +198.778 165.176 l +199.224 165.176 l +199.67 165.176 l +200.117 165.176 l +200.563 165.176 l +201.01 165.176 l +201.456 165.176 l +201.902 165.176 l +202.349 165.176 l +202.795 165.176 l +203.242 165.176 l +203.688 165.176 l +204.134 165.176 l +204.581 165.176 l +205.027 165.176 l +205.474 165.176 l +205.92 165.176 l +206.366 168.903 l +206.813 172.411 l +207.259 175.711 l +207.706 178.814 l +208.152 181.73 l +208.598 184.467 l +209.045 187.036 l +209.491 189.445 l +209.938 191.702 l +210.384 193.814 l +210.83 195.789 l +211.277 197.635 l +211.723 199.357 l +212.17 200.963 l +212.616 202.457 l +213.062 203.847 l +213.509 205.136 l +213.955 206.332 l +214.402 207.437 l +214.848 208.458 l +215.294 209.399 l +215.741 210.263 l +216.187 211.055 l +216.634 211.778 l +217.08 212.437 l +217.526 213.034 l +217.973 213.574 l +218.419 214.058 l +218.866 214.491 l +219.312 214.875 l +219.758 215.212 l +220.205 215.505 l +220.651 215.756 l +221.098 215.969 l +221.544 216.144 l +221.99 216.285 l +222.437 216.392 l +222.883 216.469 l +223.33 216.516 l +223.776 216.535 l +224.222 216.528 l +224.669 216.497 l +225.115 216.443 l +225.562 216.367 l +226.008 216.27 l +226.454 216.155 l +226.901 216.021 l +227.347 215.871 l +227.794 215.704 l +228.24 215.523 l +228.686 215.328 l +229.133 215.12 l +229.579 214.9 l +230.026 214.669 l +230.472 214.427 l +230.918 214.175 l +231.365 213.914 l +231.811 213.644 l +232.258 213.367 l +232.704 213.083 l +233.15 212.792 l +233.597 212.494 l +234.043 212.191 l +234.49 211.883 l +234.936 211.571 l +235.382 211.253 l +235.829 210.932 l +236.275 210.608 l +236.722 210.28 l +237.168 209.95 l +237.614 209.617 l +238.061 209.282 l +238.507 208.945 l +238.954 208.606 l +239.4 208.266 l +239.846 207.925 l +240.293 207.583 l +240.739 207.24 l +241.186 206.897 l +241.632 206.554 l +242.078 206.21 l +242.525 205.8... [truncated message content] |
From: <jd...@us...> - 2007-10-26 17:48:18
|
Revision: 4014 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4014&view=rev Author: jdh2358 Date: 2007-10-26 10:48:16 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added convolution demo figs Added Paths: ----------- trunk/py4science/workbook/fig/convolution_demo.eps trunk/py4science/workbook/fig/convolution_demo.png Added: trunk/py4science/workbook/fig/convolution_demo.eps =================================================================== --- trunk/py4science/workbook/fig/convolution_demo.eps (rev 0) +++ trunk/py4science/workbook/fig/convolution_demo.eps 2007-10-26 17:48:16 UTC (rev 4014) @@ -0,0 +1,9360 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Title: convolution_demo.eps +%%Creator: matplotlib version 0.90.1, http://matplotlib.sourceforge.net/ +%%CreationDate: Fri Oct 26 12:47:43 2007 +%%Orientation: portrait +%%BoundingBox: 18 180 594 612 +%%EndComments +%%BeginProlog +/mpldict 7 dict def +mpldict begin +/m { moveto } bind def +/l { lineto } bind def +/r { rlineto } bind def +/box { +m +1 index 0 r +0 exch r +neg 0 r +closepath +} bind def +/clipbox { +box +clip +newpath +} bind def +/ellipse { +newpath +matrix currentmatrix 7 1 roll +translate +scale +0 0 1 5 3 roll arc +setmatrix +closepath +} bind def +%!PS-Adobe-3.0 Resource-Font +%%Title: Bitstream Vera Sans +%%Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. +%%Creator: Converted from TrueType by PPR +25 dict begin +/_d{bind def}bind def +/_m{moveto}_d +/_l{lineto}_d +/_cl{closepath eofill}_d +/_c{curveto}_d +/_sc{7 -1 roll{setcachedevice}{pop pop pop pop pop pop}ifelse}_d +/_e{exec}_d +/FontName /BitstreamVeraSans-Roman def +/PaintType 0 def +/FontMatrix[.001 0 0 .001 0 0]def +/FontBBox[-182 -235 1287 928]def +/FontType 3 def +/Encoding StandardEncoding def +/FontInfo 10 dict dup begin +/FamilyName (Bitstream Vera Sans) def +/FullName (Bitstream Vera Sans) def +/Notice (Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.) def +/Weight (Roman) def +/Version (Release 1.10) def +/ItalicAngle 0.0 def +/isFixedPitch false def +/UnderlinePosition -213 def +/UnderlineThickness 143 def +end readonly def +/CharStrings 28 dict dup begin +/space{318 0 0 0 0 0 _sc +}_d +/parenleft{390 0 86 -131 310 759 _sc +310 759 _m +266 683 234 609 213 536 _c +191 463 181 389 181 314 _c +181 238 191 164 213 91 _c +234 17 266 -56 310 -131 _c +232 -131 _l +183 -54 146 20 122 94 _c +98 168 86 241 86 314 _c +86 386 98 459 122 533 _c +146 607 182 682 232 759 _c +310 759 _l +_cl}_d +/parenright{390 0 80 -131 304 759 _sc +80 759 _m +158 759 _l +206 682 243 607 267 533 _c +291 459 304 386 304 314 _c +304 241 291 168 267 94 _c +243 20 206 -54 158 -131 _c +80 -131 _l +123 -56 155 17 177 91 _c +198 164 209 238 209 314 _c +209 389 198 463 177 536 _c +155 609 123 683 80 759 _c +_cl}_d +/hyphen{361 0 49 234 312 314 _sc +49 314 _m +312 314 _l +312 234 _l +49 234 _l +49 314 _l +_cl}_d +/period{318 0 107 0 210 124 _sc +107 124 _m +210 124 _l +210 0 _l +107 0 _l +107 124 _l +_cl}_d +/zero{636 0 66 -13 570 742 _sc +318 664 _m +267 664 229 639 203 589 _c +177 539 165 464 165 364 _c +165 264 177 189 203 139 _c +229 89 267 64 318 64 _c +369 64 407 89 433 139 _c +458 189 471 264 471 364 _c +471 464 458 539 433 589 _c +407 639 369 664 318 664 _c +318 742 _m +399 742 461 709 505 645 _c +548 580 570 486 570 364 _c +570 241 548 147 505 83 _c +461 19 399 -13 318 -13 _c +236 -13 173 19 130 83 _c +87 147 66 241 66 364 _c +66 486 87 580 130 645 _c +173 709 236 742 318 742 _c +_cl}_d +/one{636 0 110 0 544 729 _sc +124 83 _m +285 83 _l +285 639 _l +110 604 _l +110 694 _l +284 729 _l +383 729 _l +383 83 _l +544 83 _l +544 0 _l +124 0 _l +124 83 _l +_cl}_d +/two{{636 0 73 0 536 742 _sc +192 83 _m +536 83 _l +536 0 _l +73 0 _l +73 83 _l +110 121 161 173 226 239 _c +290 304 331 346 348 365 _c +380 400 402 430 414 455 _c +426 479 433 504 433 528 _c +433 566 419 598 392 622 _c +365 646 330 659 286 659 _c +255 659 222 653 188 643 _c +154 632 117 616 78 594 _c +78 694 _l +118 710 155 722 189 730 _c +223 738 255 742 284 742 _c +359 742 419 723 464 685 _c +509 647 532 597 532 534 _c +532 504 526 475 515 449 _c +504 422 484 390 454 354 _c +446 344 420 317 376 272 _c +332 227 271 164 192 83 _c +_cl}_e}_d +/three{{636 0 76 -13 556 742 _sc +406 393 _m +453 383 490 362 516 330 _c +542 298 556 258 556 212 _c +556 140 531 84 482 45 _c +432 6 362 -13 271 -13 _c +240 -13 208 -10 176 -4 _c +144 1 110 10 76 22 _c +76 117 _l +103 101 133 89 166 81 _c +198 73 232 69 268 69 _c +330 69 377 81 409 105 _c +441 129 458 165 458 212 _c +458 254 443 288 413 312 _c +383 336 341 349 287 349 _c +202 349 _l +202 430 _l +291 430 _l +339 430 376 439 402 459 _c +428 478 441 506 441 543 _c +441 580 427 609 401 629 _c +374 649 336 659 287 659 _c +260 659 231 656 200 650 _c +169 644 135 635 98 623 _c +98 711 _l +135 721 170 729 203 734 _c +235 739 266 742 296 742 _c +}_e{370 742 429 725 473 691 _c +517 657 539 611 539 553 _c +539 513 527 479 504 451 _c +481 423 448 403 406 393 _c +_cl}_e}_d +/four{636 0 49 0 580 729 _sc +378 643 _m +129 254 _l +378 254 _l +378 643 _l +352 729 _m +476 729 _l +476 254 _l +580 254 _l +580 172 _l +476 172 _l +476 0 _l +378 0 _l +378 172 _l +49 172 _l +49 267 _l +352 729 _l +_cl}_d +/five{{636 0 77 -13 549 729 _sc +108 729 _m +495 729 _l +495 646 _l +198 646 _l +198 467 _l +212 472 227 476 241 478 _c +255 480 270 482 284 482 _c +365 482 429 459 477 415 _c +525 370 549 310 549 234 _c +549 155 524 94 475 51 _c +426 8 357 -13 269 -13 _c +238 -13 207 -10 175 -6 _c +143 -1 111 6 77 17 _c +77 116 _l +106 100 136 88 168 80 _c +199 72 232 69 267 69 _c +323 69 368 83 401 113 _c +433 143 450 183 450 234 _c +450 284 433 324 401 354 _c +368 384 323 399 267 399 _c +241 399 214 396 188 390 _c +162 384 135 375 108 363 _c +108 729 _l +_cl}_e}_d +/six{{636 0 70 -13 573 742 _sc +330 404 _m +286 404 251 388 225 358 _c +199 328 186 286 186 234 _c +186 181 199 139 225 109 _c +251 79 286 64 330 64 _c +374 64 409 79 435 109 _c +461 139 474 181 474 234 _c +474 286 461 328 435 358 _c +409 388 374 404 330 404 _c +526 713 _m +526 623 _l +501 635 476 644 451 650 _c +425 656 400 659 376 659 _c +310 659 260 637 226 593 _c +192 549 172 482 168 394 _c +187 422 211 444 240 459 _c +269 474 301 482 336 482 _c +409 482 467 459 509 415 _c +551 371 573 310 573 234 _c +573 159 550 99 506 54 _c +462 9 403 -13 330 -13 _c +246 -13 181 19 137 83 _c +92 147 70 241 70 364 _c +70 479 97 571 152 639 _c +206 707 280 742 372 742 _c +}_e{396 742 421 739 447 735 _c +472 730 498 723 526 713 _c +_cl}_e}_d +/c{{550 0 55 -13 488 560 _sc +488 526 _m +488 442 _l +462 456 437 466 411 473 _c +385 480 360 484 334 484 _c +276 484 230 465 198 428 _c +166 391 150 339 150 273 _c +150 206 166 154 198 117 _c +230 80 276 62 334 62 _c +360 62 385 65 411 72 _c +437 79 462 90 488 104 _c +488 21 _l +462 9 436 0 410 -5 _c +383 -10 354 -13 324 -13 _c +242 -13 176 12 128 64 _c +79 115 55 185 55 273 _c +55 362 79 432 128 483 _c +177 534 244 560 330 560 _c +358 560 385 557 411 551 _c +437 545 463 537 488 526 _c +_cl}_e}_d +/e{{615 0 55 -13 562 560 _sc +562 296 _m +562 252 _l +149 252 _l +153 190 171 142 205 110 _c +238 78 284 62 344 62 _c +378 62 412 66 444 74 _c +476 82 509 95 541 113 _c +541 28 _l +509 14 476 3 442 -3 _c +408 -9 373 -13 339 -13 _c +251 -13 182 12 131 62 _c +80 112 55 181 55 268 _c +55 357 79 428 127 481 _c +175 533 241 560 323 560 _c +397 560 455 536 498 489 _c +540 441 562 377 562 296 _c +472 322 _m +471 371 457 410 431 440 _c +404 469 368 484 324 484 _c +274 484 234 469 204 441 _c +174 413 156 373 152 322 _c +472 322 _l +_cl}_e}_d +/f{352 0 23 0 371 760 _sc +371 760 _m +371 685 _l +285 685 _l +253 685 230 678 218 665 _c +205 652 199 629 199 595 _c +199 547 _l +347 547 _l +347 477 _l +199 477 _l +199 0 _l +109 0 _l +109 477 _l +23 477 _l +23 547 _l +109 547 _l +109 585 _l +109 645 123 690 151 718 _c +179 746 224 760 286 760 _c +371 760 _l +_cl}_d +/i{278 0 94 0 184 760 _sc +94 547 _m +184 547 _l +184 0 _l +94 0 _l +94 547 _l +94 760 _m +184 760 _l +184 646 _l +94 646 _l +94 760 _l +_cl}_d +/l{278 0 94 0 184 760 _sc +94 760 _m +184 760 _l +184 0 _l +94 0 _l +94 760 _l +_cl}_d +/m{{974 0 91 0 889 560 _sc +520 442 _m +542 482 569 511 600 531 _c +631 550 668 560 711 560 _c +767 560 811 540 842 500 _c +873 460 889 403 889 330 _c +889 0 _l +799 0 _l +799 327 _l +799 379 789 418 771 444 _c +752 469 724 482 686 482 _c +639 482 602 466 575 435 _c +548 404 535 362 535 309 _c +535 0 _l +445 0 _l +445 327 _l +445 379 435 418 417 444 _c +398 469 369 482 331 482 _c +285 482 248 466 221 435 _c +194 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +201 495 226 520 255 536 _c +283 552 317 560 357 560 _c +397 560 430 550 458 530 _c +486 510 506 480 520 442 _c +}_e{_cl}_e}_d +/n{634 0 91 0 549 560 _sc +549 330 _m +549 0 _l +459 0 _l +459 327 _l +459 379 448 417 428 443 _c +408 469 378 482 338 482 _c +289 482 251 466 223 435 _c +195 404 181 362 181 309 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +202 494 227 519 257 535 _c +286 551 320 560 358 560 _c +420 560 468 540 500 501 _c +532 462 549 405 549 330 _c +_cl}_d +/o{612 0 55 -13 557 560 _sc +306 484 _m +258 484 220 465 192 427 _c +164 389 150 338 150 273 _c +150 207 163 156 191 118 _c +219 80 257 62 306 62 _c +354 62 392 80 420 118 _c +448 156 462 207 462 273 _c +462 337 448 389 420 427 _c +392 465 354 484 306 484 _c +306 560 _m +384 560 445 534 490 484 _c +534 433 557 363 557 273 _c +557 183 534 113 490 63 _c +445 12 384 -13 306 -13 _c +227 -13 165 12 121 63 _c +77 113 55 183 55 273 _c +55 363 77 433 121 484 _c +165 534 227 560 306 560 _c +_cl}_d +/p{{635 0 91 -207 580 560 _sc +181 82 _m +181 -207 _l +91 -207 _l +91 547 _l +181 547 _l +181 464 _l +199 496 223 520 252 536 _c +281 552 316 560 356 560 _c +422 560 476 533 518 481 _c +559 428 580 359 580 273 _c +580 187 559 117 518 65 _c +476 13 422 -13 356 -13 _c +316 -13 281 -5 252 10 _c +223 25 199 49 181 82 _c +487 273 _m +487 339 473 390 446 428 _c +418 466 381 485 334 485 _c +286 485 249 466 222 428 _c +194 390 181 339 181 273 _c +181 207 194 155 222 117 _c +249 79 286 61 334 61 _c +381 61 418 79 446 117 _c +473 155 487 207 487 273 _c +_cl}_e}_d +/r{411 0 91 0 411 560 _sc +411 463 _m +401 469 390 473 378 476 _c +366 478 353 480 339 480 _c +288 480 249 463 222 430 _c +194 397 181 350 181 288 _c +181 0 _l +91 0 _l +91 547 _l +181 547 _l +181 462 _l +199 495 224 520 254 536 _c +284 552 321 560 365 560 _c +371 560 378 559 386 559 _c +393 558 401 557 411 555 _c +411 463 _l +_cl}_d +/s{{521 0 54 -13 472 560 _sc +443 531 _m +443 446 _l +417 458 391 468 364 475 _c +336 481 308 485 279 485 _c +234 485 200 478 178 464 _c +156 450 145 430 145 403 _c +145 382 153 366 169 354 _c +185 342 217 330 265 320 _c +296 313 _l +360 299 405 279 432 255 _c +458 230 472 195 472 151 _c +472 100 452 60 412 31 _c +372 1 316 -13 246 -13 _c +216 -13 186 -10 154 -5 _c +122 0 89 8 54 20 _c +54 113 _l +87 95 120 82 152 74 _c +184 65 216 61 248 61 _c +290 61 323 68 346 82 _c +368 96 380 117 380 144 _c +380 168 371 187 355 200 _c +339 213 303 226 247 238 _c +216 245 _l +160 257 119 275 95 299 _c +70 323 58 356 58 399 _c +58 450 76 490 112 518 _c +148 546 200 560 268 560 _c +}_e{301 560 332 557 362 552 _c +391 547 418 540 443 531 _c +_cl}_e}_d +/t{392 0 27 0 368 702 _sc +183 702 _m +183 547 _l +368 547 _l +368 477 _l +183 477 _l +183 180 _l +183 135 189 106 201 94 _c +213 81 238 75 276 75 _c +368 75 _l +368 0 _l +276 0 _l +206 0 158 13 132 39 _c +106 65 93 112 93 180 _c +93 477 _l +27 477 _l +27 547 _l +93 547 _l +93 702 _l +183 702 _l +_cl}_d +/u{634 0 85 -13 543 547 _sc +85 216 _m +85 547 _l +175 547 _l +175 219 _l +175 167 185 129 205 103 _c +225 77 255 64 296 64 _c +344 64 383 79 411 110 _c +439 141 453 183 453 237 _c +453 547 _l +543 547 _l +543 0 _l +453 0 _l +453 84 _l +431 50 405 26 377 10 _c +348 -5 315 -13 277 -13 _c +214 -13 166 6 134 45 _c +101 83 85 140 85 216 _c +_cl}_d +/v{592 0 30 0 562 547 _sc +30 547 _m +125 547 _l +296 88 _l +467 547 _l +562 547 _l +357 0 _l +235 0 _l +30 547 _l +_cl}_d +/x{592 0 29 0 559 547 _sc +549 547 _m +351 281 _l +559 0 _l +453 0 _l +294 215 _l +135 0 _l +29 0 _l +241 286 _l +47 547 _l +153 547 _l +298 352 _l +443 547 _l +549 547 _l +_cl}_d +/y{592 0 30 -207 562 547 _sc +322 -50 _m +296 -114 271 -157 247 -177 _c +223 -197 191 -207 151 -207 _c +79 -207 _l +79 -132 _l +132 -132 _l +156 -132 175 -126 189 -114 _c +203 -102 218 -75 235 -31 _c +251 9 _l +30 547 _l +125 547 _l +296 119 _l +467 547 _l +562 547 _l +322 -50 _l +_cl}_d +end readonly def + +/BuildGlyph + {exch begin + CharStrings exch + 2 copy known not{pop /.notdef}if + true 3 1 roll get exec + end}_d + +/BuildChar { + 1 index /Encoding get exch get + 1 index /BuildGlyph get exec +}_d + +FontName currentdict end definefont pop +%%EOF +end +%%EndProlog +mpldict begin +18 180 translate +576 432 0 0 clipbox +gsave +1.000 setgray +1.000 setlinewidth +0 setlinejoin +2 setlinecap +[] 0 setdash +0 0 m +0 432 l +576 432 l +576 0 l +closepath +gsave +fill +grestore +stroke +grestore +gsave +0.000 setgray +72 287.153 m +72 388.8 l +518.4 388.8 l +518.4 287.153 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +0.000 0.000 1.000 setrgbcolor +gsave +446.4 101.647 72 287.153 clipbox +72 343.867 m +72.2232 339.288 l +72.4464 332.714 l +72.6696 335.08 l +72.8928 327.446 l +73.116 341.988 l +73.3392 322.394 l +73.5624 347.531 l +73.7856 319.153 l +74.0088 344.917 l +74.232 354.267 l +74.4552 322.671 l +74.6784 328.462 l +74.9016 355.256 l +75.1248 328.67 l +75.348 338.482 l +75.5712 320.453 l +75.7944 315.661 l +76.0176 353.81 l +76.2408 302.906 l +76.464 328.87 l +76.6872 347.491 l +76.9104 338.853 l +77.1336 347.249 l +77.3568 336.32 l +77.58 323.16 l +77.8032 340.165 l +78.0264 315.693 l +78.2496 326.115 l +78.4728 350.138 l +78.696 332.371 l +78.9192 359.18 l +79.1424 340.373 l +79.3656 308.373 l +79.5888 326.486 l +79.812 338.785 l +80.0352 335.235 l +80.2584 343.013 l +80.4816 338.928 l +80.7048 309.501 l +80.928 353.562 l +81.1512 331.705 l +81.3744 333.161 l +81.5976 319.979 l +81.8208 356.059 l +82.044 354.423 l +82.2672 339.182 l +82.4904 340.501 l +82.7136 336.139 l +82.9368 338.771 l +83.16 333.883 l +83.3832 341.928 l +83.6064 334.049 l +83.8296 335.692 l +84.0528 347.591 l +84.276 347.629 l +84.4992 343.76 l +84.7224 328.134 l +84.9456 362.262 l +85.1688 369.357 l +85.392 328.404 l +85.6152 323.79 l +85.8384 338.331 l +86.0616 353.838 l +86.2848 316.16 l +86.508 314.486 l +86.7312 315.954 l +86.9544 317.699 l +87.1776 338.309 l +87.4008 320.391 l +87.624 338.206 l +87.8472 330.791 l +88.0704 324.97 l +88.2936 354.961 l +88.5168 358.509 l +88.74 334.374 l +88.9632 338.242 l +89.1864 335.724 l +89.4096 350.88 l +89.6328 325.672 l +89.856 348.381 l +90.0792 332.819 l +90.3024 347.452 l +90.5256 341.409 l +90.7488 341.292 l +90.972 328.965 l +91.1952 300.313 l +91.4184 354.126 l +91.6416 328.944 l +91.8648 335.554 l +92.088 353.85 l +92.3112 321.465 l +92.5344 348.773 l +92.7576 354.457 l +92.9808 334.092 l +93.204 337.065 l +93.4272 339.83 l +93.6504 347.136 l +93.8736 362.926 l +94.0968 331.344 l +94.32 343.578 l +94.5432 334.848 l +94.7664 342.132 l +94.9896 327.946 l +95.2128 349.956 l +95.436 324.695 l +95.6592 355.153 l +95.8824 315.59 l +96.1056 323.457 l +96.3288 322.736 l +96.552 330.548 l +96.7752 341.856 l +96.9984 339.225 l +97.2216 339.968 l +97.4448 330.605 l +97.668 325.844 l +97.8912 348.616 l +98.1144 310.617 l +98.3376 334.535 l +98.5608 343.827 l +98.784 339.585 l +99.0072 332.938 l +99.2304 327.337 l +99.4536 319.309 l +99.6768 335.791 l +99.9 334.289 l +100.123 333.633 l +100.346 329.48 l +100.57 320.988 l +100.793 343.192 l +101.016 322.22 l +101.239 352.387 l +101.462 342.13 l +101.686 331.256 l +101.909 347.539 l +102.132 316.772 l +102.355 342.301 l +102.578 341.19 l +102.802 328.384 l +103.025 343.463 l +103.248 332.564 l +103.471 333.757 l +103.694 324.164 l +103.918 354.393 l +104.141 344.331 l +104.364 334.079 l +104.587 340.72 l +104.81 338.1 l +105.034 305.993 l +105.257 327.753 l +105.48 336.424 l +105.703 317.751 l +105.926 343.96 l +106.15 350.815 l +106.373 350.132 l +106.596 345.137 l +106.819 328.639 l +107.042 340.331 l +107.266 323.002 l +107.489 343.727 l +107.712 341.469 l +107.935 345.171 l +108.158 314.63 l +108.382 335.428 l +108.605 361.656 l +108.828 333.668 l +109.051 350.446 l +109.274 335.274 l +109.498 323.229 l +109.721 331.726 l +109.944 320.118 l +110.167 332.658 l +110.39 335.15 l +110.614 370.749 l +110.837 334.049 l +111.06 346.616 l +111.283 328.282 l +111.506 337.781 l +111.73 346.905 l +111.953 341.494 l +112.176 323.522 l +112.399 337.043 l +112.622 350.031 l +112.846 332.632 l +113.069 338.248 l +113.292 326.202 l +113.515 347.404 l +113.738 332.984 l +113.962 353.551 l +114.185 346.926 l +114.408 328.957 l +114.631 319.985 l +114.854 318.633 l +115.078 338.413 l +115.301 314.157 l +115.524 321.525 l +115.747 320.606 l +115.97 343.475 l +116.194 345.988 l +116.417 335.294 l +116.64 330.851 l +116.863 343.095 l +117.086 354.809 l +117.31 336.263 l +117.533 325.122 l +117.756 349.69 l +117.979 323.728 l +118.202 310.946 l +118.426 327.909 l +118.649 332.749 l +118.872 327.218 l +119.095 334.323 l +119.318 338.8 l +119.542 331.812 l +119.765 333.247 l +119.988 342.293 l +120.211 329.666 l +120.434 362.03 l +120.658 338.728 l +120.881 356.901 l +121.104 321.502 l +121.327 338.987 l +121.55 348.258 l +121.774 331.654 l +121.997 317.285 l +122.22 341.939 l +122.443 344.15 l +122.666 352.274 l +122.89 356.281 l +123.113 319.326 l +123.336 345.19 l +123.559 338.83 l +123.782 317.742 l +124.006 353.775 l +124.229 335.45 l +124.452 343.956 l +124.675 333.247 l +124.898 329.645 l +125.122 335.21 l +125.345 333.612 l +125.568 316.61 l +125.791 353.861 l +126.014 334.819 l +126.238 346.586 l +126.461 345.378 l +126.684 334.209 l +126.907 342.638 l +127.13 321.78 l +127.354 349.036 l +127.577 333.734 l +127.8 316.109 l +128.023 302.61 l +128.246 355.014 l +128.47 330.538 l +128.693 331.077 l +128.916 352.574 l +129.139 301.886 l +129.362 341.507 l +129.586 341.251 l +129.809 325.261 l +130.032 328.814 l +130.255 346.766 l +130.478 344.752 l +130.702 331.864 l +130.925 339.134 l +131.148 375.109 l +131.371 336.755 l +131.594 353.179 l +131.818 350.809 l +132.041 339.919 l +132.264 334.492 l +132.487 328.056 l +132.71 335.876 l +132.934 328.21 l +133.157 350.499 l +133.38 346.148 l +133.603 330.966 l +133.826 329.688 l +134.05 335.348 l +134.273 344.92 l +134.496 326.295 l +134.719 338.607 l +134.942 339.43 l +135.166 343.741 l +135.389 323.304 l +135.612 329.549 l +135.835 351.462 l +136.058 324.559 l +136.282 354.877 l +136.505 371.825 l +136.728 329.577 l +136.951 350.621 l +137.174 312.243 l +137.398 361.19 l +137.621 336.412 l +137.844 331.673 l +138.067 351.203 l +138.29 313.648 l +138.514 346.087 l +138.737 354.068 l +138.96 357.564 l +139.183 339.197 l +139.406 313.753 l +139.63 339.48 l +139.853 322.867 l +140.076 354.498 l +140.299 367.08 l +140.522 366.738 l +140.746 357.042 l +140.969 324.142 l +141.192 347.681 l +141.415 328.838 l +141.638 334.513 l +141.862 360.052 l +142.085 326.021 l +142.308 356.084 l +142.531 351.301 l +142.754 341.788 l +142.978 350.223 l +143.201 356.906 l +143.424 337.171 l +143.647 343.098 l +143.87 327.528 l +144.094 351.515 l +144.317 309.375 l +144.54 352.085 l +144.763 341.431 l +144.986 329.401 l +145.21 361.376 l +145.433 331.783 l +145.656 339.434 l +145.879 327.609 l +146.102 341.98 l +146.326 335.416 l +146.549 361.027 l +146.772 339.046 l +146.995 356.448 l +147.218 325.447 l +147.442 352.99 l +147.665 345.52 l +147.888 343.177 l +148.111 328.437 l +148.334 335.622 l +148.558 350.944 l +148.781 339.887 l +149.004 336.563 l +149.227 310.466 l +149.45 350.864 l +149.674 329.472 l +149.897 340.56 l +150.12 339.885 l +150.343 323.11 l +150.566 346.307 l +150.79 347.547 l +151.013 356.735 l +151.236 357.135 l +151.459 351.444 l +151.682 331.407 l +151.906 317.347 l +152.129 316.545 l +152.352 321.356 l +152.575 333.128 l +152.798 342.947 l +153.022 332.923 l +153.245 331.314 l +153.468 308.098 l +153.691 347.817 l +153.914 318.189 l +154.138 341.173 l +154.361 332.73 l +154.584 331.777 l +154.807 350.621 l +155.03 330.967 l +155.254 373.104 l +155.477 320.363 l +155.7 308.244 l +155.923 318.484 l +156.146 330.023 l +156.37 338.587 l +156.593 334.833 l +156.816 338.374 l +157.039 345.074 l +157.262 350.56 l +157.486 352.168 l +157.709 335.883 l +157.932 347.218 l +158.155 328.736 l +158.378 325.381 l +158.602 341.116 l +158.825 339.744 l +159.048 354.032 l +159.271 326.076 l +159.494 341.984 l +159.718 360.863 l +159.941 335.897 l +160.164 340.701 l +160.387 347.349 l +160.61 329.307 l +160.834 357.66 l +161.057 331.026 l +161.28 347.15 l +161.503 354.254 l +161.726 355.439 l +161.95 335.662 l +162.173 345.856 l +162.396 334.483 l +162.619 347.237 l +162.842 337.619 l +163.066 346.133 l +163.289 331.495 l +163.512 321.927 l +163.735 360.125 l +163.958 336.511 l +164.182 349.783 l +164.405 351.399 l +164.628 360.739 l +164.851 353.596 l +165.074 363.369 l +165.298 340.263 l +165.521 332.872 l +165.744 360.708 l +165.967 325.367 l +166.19 352.813 l +166.414 350.724 l +166.637 340.436 l +166.86 328.024 l +167.083 350.737 l +167.306 320.16 l +167.53 332.82 l +167.753 319.839 l +167.976 345.272 l +168.199 351.299 l +168.422 340.853 l +168.646 338.844 l +168.869 313.959 l +169.092 345.504 l +169.315 348.31 l +169.538 322.351 l +169.762 336.498 l +169.985 351.099 l +170.208 331.021 l +170.431 352.252 l +170.654 356.874 l +170.878 331.914 l +171.101 321.619 l +171.324 330.379 l +171.547 326.784 l +171.77 333.379 l +171.994 308.175 l +172.217 345.676 l +172.44 353.894 l +172.663 342.157 l +172.886 323.041 l +173.11 334.02 l +173.333 352.339 l +173.556 339.407 l +173.779 334.699 l +174.002 329.986 l +174.226 331.824 l +174.449 333.244 l +174.672 351.401 l +174.895 327.169 l +175.118 341.667 l +175.342 338.255 l +175.565 321.334 l +175.788 331.397 l +176.011 345.539 l +176.234 349.349 l +176.458 353.323 l +176.681 336.909 l +176.904 328.597 l +177.127 346.447 l +177.35 322.193 l +177.574 333.691 l +177.797 342.526 l +178.02 335.444 l +178.243 321.973 l +178.466 334.097 l +178.69 323.476 l +178.913 330.154 l +179.136 328.261 l +179.359 319.064 l +179.582 345.367 l +179.806 358.018 l +180.029 329.789 l +180.252 359.51 l +180.475 331.328 l +180.698 346.545 l +180.922 323.388 l +181.145 343.832 l +181.368 345.251 l +181.591 338.201 l +181.814 360.666 l +182.038 354.765 l +182.261 345.676 l +182.484 331.725 l +182.707 344.77 l +182.93 314.243 l +183.154 338.138 l +183.377 335.696 l +183.6 360.106 l +183.823 326.416 l +184.046 321.953 l +184.27 341.098 l +184.493 346.13 l +184.716 323.36 l +184.939 342.952 l +185.162 337.02 l +185.386 322.048 l +185.609 331.78 l +185.832 340.152 l +186.055 313.072 l +186.278 335.623 l +186.502 319.53 l +186.725 336.79 l +186.948 342.563 l +187.171 318.743 l +187.394 343.325 l +187.618 333.929 l +187.841 341.693 l +188.064 311.994 l +188.287 337.349 l +188.51 336.907 l +188.734 326.11 l +188.957 344.291 l +189.18 331.097 l +189.403 323.627 l +189.626 346.299 l +189.85 351.078 l +190.073 339.075 l +190.296 333.343 l +190.519 342.766 l +190.742 314.558 l +190.966 362.947 l +191.189 324.687 l +191.412 345.6 l +191.635 331.145 l +191.858 346.396 l +192.082 329.057 l +192.305 356.444 l +192.528 342.279 l +192.751 334.866 l +192.974 339.556 l +193.198 318.447 l +193.421 339.033 l +193.644 356.843 l +193.867 343.342 l +194.09 349.694 l +194.314 350.242 l +194.537 327.069 l +194.76 329.28 l +194.983 329.69 l +195.206 341.879 l +195.43 341.966 l +195.653 344.381 l +195.876 334.394 l +196.099 316.712 l +196.322 339.175 l +196.546 321.599 l +196.769 348.005 l +196.992 348.488 l +197.215 333.814 l +197.438 349.12 l +197.662 354.655 l +197.885 357.8 l +198.108 316.165 l +198.331 332.358 l +198.554 357.85 l +198.778 342.342 l +199.001 321.952 l +199.224 329.776 l +199.447 330.257 l +199.67 338.377 l +199.894 317.301 l +200.117 311.308 l +200.34 351.86 l +200.563 360.64 l +200.786 361.922 l +201.01 335.672 l +201.233 349.364 l +201.456 350.644 l +201.679 320.821 l +201.902 340.586 l +202.126 340.497 l +202.349 340.156 l +202.572 354.81 l +202.795 346.792 l +203.018 347.088 l +203.242 351.167 l +203.465 343.932 l +203.688 332.624 l +203.911 340.739 l +204.134 326.838 l +204.358 334.542 l +204.581 367.524 l +204.804 333.432 l +205.027 360.174 l +205.25 344.798 l +205.474 359.102 l +205.697 349.32 l +205.92 332.968 l +206.143 339.876 l +206.366 315.079 l +206.59 327.748 l +206.813 331.533 l +207.036 348.197 l +207.259 344.875 l +207.482 317.997 l +207.706 349.103 l +207.929 345.598 l +208.152 338.138 l +208.375 357.202 l +208.598 343.825 l +208.822 335.148 l +209.045 342.629 l +209.268 314.189 l +209.491 342.644 l +209.714 321.524 l +209.938 361.008 l +210.161 333.792 l +210.384 328.506 l +210.607 354.81 l +210.83 319.491 l +211.054 336.384 l +211.277 315.258 l +211.5 343.479 l +211.723 357.256 l +211.946 346.256 l +212.17 332.167 l +212.393 342.847 l +212.616 339.575 l +212.839 350.612 l +213.062 330.022 l +213.286 344.281 l +213.509 346.727 l +213.732 345.102 l +213.955 323.54 l +214.178 343.947 l +214.402 356.65 l +214.625 354.22 l +214.848 343.624 l +215.071 342.036 l +215.294 319.056 l +215.518 342.584 l +215.741 352.487 l +215.964 342.039 l +216.187 315.856 l +216.41 354.527 l +216.634 340.74 l +216.857 344.733 l +217.08 339.001 l +217.303 345.544 l +217.526 337.851 l +217.75 321.093 l +217.973 356.438 l +218.196 349.989 l +218.419 315.038 l +218.642 337.201 l +218.866 329.449 l +219.089 319.418 l +219.312 344.924 l +219.535 329.679 l +219.758 346.441 l +219.982 342.572 l +220.205 329.345 l +220.428 333.78 l +220.651 328.158 l +220.874 325.402 l +221.098 328.439 l +221.321 339.642 l +221.544 335.217 l +221.767 326.392 l +221.99 339.985 l +222.214 337.324 l +222.437 339.011 l +222.66 375.942 l +222.883 338.709 l +223.106 339.573 l +223.33 321.948 l +223.553 343.512 l +223.776 341.074 l +223.999 335.862 l +224.222 344.17 l +224.446 330.054 l +224.669 358.623 l +224.892 324.68 l +225.115 329.145 l +225.338 338.763 l +225.562 330.194 l +225.785 346.026 l +226.008 356.269 l +226.231 345.745 l +226.454 339.523 l +226.678 361.67 l +226.901 338.062 l +227.124 347.153 l +227.347 325.333 l +227.57 350.243 l +227.794 342.191 l +228.017 337.913 l +228.24 357.19 l +228.463 325.232 l +228.686 326.242 l +228.91 339.4 l +229.133 349.905 l +229.356 340.155 l +229.579 360.247 l +229.802 343.908 l +230.026 310.12 l +230.249 341.784 l +230.472 332.967 l +230.695 333.168 l +230.918 347.728 l +231.142 348.001 l +231.365 345.645 l +231.588 335.373 l +231.811 355.749 l +232.034 310.216 l +232.258 335.36 l +232.481 350.598 l +232.704 337.315 l +232.927 349.767 l +233.15 353.196 l +233.374 332.888 l +233.597 327.839 l +233.82 341.716 l +234.043 346.323 l +234.266 339.851 l +234.49 338.779 l +234.713 350.779 l +234.936 324.737 l +235.159 341.774 l +235.382 342.716 l +235.606 330.188 l +235.829 325.075 l +236.052 328.177 l +236.275 362.254 l +236.498 309.518 l +236.722 312.322 l +236.945 359.36 l +237.168 353.66 l +237.391 325.567 l +237.614 333.956 l +237.838 339.491 l +238.061 337.282 l +238.284 335.717 l +238.507 338.541 l +238.73 318.051 l +238.954 327.906 l +239.177 326.335 l +239.4 354.826 l +239.623 332.061 l +239.846 329.244 l +240.07 341.208 l +240.293 314.804 l +240.516 350.749 l +240.739 332.206 l +240.962 353.409 l +241.186 348.168 l +241.409 310.729 l +241.632 322.629 l +241.855 331.169 l +242.078 354.051 l +242.302 353.777 l +242.525 342.73 l +242.748 330.625 l +242.971 332.436 l +243.194 333.434 l +243.418 354.593 l +243.641 331.13 l +243.864 323.521 l +244.087 337.164 l +244.31 335.966 l +244.534 311.004 l +244.757 337.921 l +244.98 318.916 l +245.203 332.896 l +245.426 335.534 l +245.65 355.22 l +245.873 348.456 l +246.096 336.52 l +246.319 329.548 l +246.542 354.832 l +246.766 332.041 l +246.989 347.472 l +247.212 323.139 l +247.435 326.063 l +247.658 321.058 l +247.882 333.217 l +248.105 342.804 l +248.328 344.777 l +248.551 317.52 l +248.774 343.608 l +248.998 352.964 l +249.221 334.653 l +249.444 346.065 l +249.667 319.178 l +249.89 344.885 l +250.114 334.555 l +250.337 330.554 l +250.56 329.872 l +250.783 326.665 l +251.006 332.344 l +251.23 348.857 l +251.453 333.781 l +251.676 332.161 l +251.899 350.485 l +252.122 358.812 l +252.346 362.664 l +252.569 337.981 l +252.792 327.166 l +253.015 331.738 l +253.238 342.828 l +253.462 342.864 l +253.685 337.79 l +253.908 328.94 l +254.131 336.294 l +254.354 317.616 l +254.578 348.936 l +254.801 335.254 l +255.024 318.658 l +255.247 306.913 l +255.47 352.287 l +255.694 356.138 l +255.917 346.546 l +256.14 329.48 l +256.363 334.276 l +256.586 361.686 l +256.81 361.471 l +257.033 333.197 l +257.256 337.218 l +257.479 335.674 l +257.702 338.388 l +257.926 346.442 l +258.149 343.058 l +258.372 339.077 l +258.595 332.909 l +258.818 340.576 l +259.042 324.864 l +259.265 319.122 l +259.488 332.956 l +259.711 331.497 l +259.934 342.06 l +260.158 326.087 l +260.381 329.943 l +260.604 342.192 l +260.827 350.796 l +261.05 317.489 l +261.274 317.332 l +261.497 341.2 l +261.72 342.143 l +261.943 331.79 l +262.166 329.397 l +262.39 341.733 l +262.613 287.489 l +262.836 326.826 l +263.059 344.573 l +263.282 325.623 l +263.506 355.823 l +263.729 351.118 l +263.952 344.95 l +264.175 346.678 l +264.398 349.293 l +264.622 335.252 l +264.845 353.964 l +265.068 345.365 l +265.291 343.776 l +265.514 343.203 l +265.738 332.051 l +265.961 357.566 l +266.184 327.809 l +266.407 327.763 l +266.63 355.77 l +266.854 329.544 l +267.077 353.794 l +267.3 355.261 l +267.523 348.912 l +267.746 341.706 l +267.97 336.352 l +268.193 330.295 l +268.416 334.814 l +268.639 348.31 l +268.862 326.201 l +269.086 313.479 l +269.309 311.252 l +269.532 334.743 l +269.755 341.322 l +269.978 342.487 l +270.202 350.163 l +270.425 352.798 l +270.648 326.359 l +270.871 331.783 l +271.094 314.434 l +271.318 353.833 l +271.541 326.991 l +271.764 339.785 l +271.987 339.352 l +272.21 354.209 l +272.434 341.097 l +272.657 331.464 l +272.88 354.522 l +273.103 329.391 l +273.326 338.922 l +273.55 339.856 l +273.773 324.53 l +273.996 334.036 l +274.219 350.119 l +274.442 316.055 l +274.666 324.177 l +274.889 354.891 l +275.112 346.077 l +275.335 323.403 l +275.558 330.617 l +275.782 334.131 l +276.005 315.071 l +276.228 340.129 l +276.451 342.181 l +276.674 344.062 l +276.898 326.978 l +277.121 350.534 l +277.344 339.793 l +277.567 343.056 l +277.79 334.4 l +278.014 351.072 l +278.237 336.314 l +278.46 343.906 l +278.683 335.066 l +278.906 328.454 l +279.13 333.578 l +279.353 318.614 l +279.576 351.426 l +279.799 330.102 l +280.022 364.43 l +280.246 350.259 l +280.469 327.023 l +280.692 337.541 l +280.915 342.183 l +281.138 357.467 l +281.362 343.49 l +281.585 329.712 l +281.808 343.23 l +282.031 304.662 l +282.254 351.892 l +282.478 337.709 l +282.701 336.746 l +282.924 336.122 l +283.147 329.782 l +283.37 324.001 l +283.594 333.019 l +283.817 327.322 l +284.04 344.868 l +284.263 313.713 l +284.486 341.485 l +284.71 343.703 l +284.933 349.424 l +285.156 346.079 l +285.379 333.1 l +285.602 344.668 l +285.826 336.591 l +286.049 338.018 l +286.272 324.092 l +286.495 322.468 l +286.718 336.377 l +286.942 350.199 l +287.165 356.83 l +287.388 355.08 l +287.611 360.584 l +287.834 314.326 l +288.058 333.261 l +288.281 333.003 l +288.504 331.824 l +288.727 334.164 l +288.95 323.514 l +289.174 358.783 l +289.397 331.439 l +289.62 333.254 l +289.843 347.546 l +290.066 341.263 l +290.29 338.477 l +290.513 344.668 l +290.736 329.313 l +290.959 331.913 l +291.182 320.38 l +291.406 332.429 l +291.629 336.772 l +291.852 340.587 l +292.075 314.127 l +292.298 373.519 l +292.522 344.383 l +292.745 355.344 l +292.968 333.772 l +293.191 347.678 l +293.414 331.645 l +293.638 327.588 l +293.861 325.234 l +294.084 320.588 l +294.307 329.005 l +294.53 344.408 l +294.754 343.054 l +294.977 317.146 l +295.2 326.338 l +295.423 336.032 l +295.646 312.143 l +295.87 326.648 l +296.093 314.245 l +296.316 340.358 l +296.539 318.955 l +296.762 322.12 l +296.986 342.121 l +297.209 350.79 l +297.432 331.39 l +297.655 351.667 l +297.878 350.874 l +298.102 332.694 l +298.325 340.699 l +298.548 344.019 l +298.771 342.757 l +298.994 338.709 l +299.218 346.807 l +299.441 342.565 l +299.664 355.253 l +299.887 343.555 l +300.11 325.395 l +300.334 318.383 l +300.557 330.064 l +300.78 319.23 l +301.003 332.283 l +301.226 338.891 l +301.45 352.874 l +301.673 324.265 l +301.896 312.109 l +302.119 338.823 l +302.342 338.618 l +302.566 324.236 l +302.789 331.85 l +303.012 329.801 l +303.235 344.707 l +303.458 338.42 l +303.682 357.617 l +303.905 348.181 l +304.128 330.983 l +304.351 344.037 l +304.574 329.668 l +304.798 336.021 l +305.021 347.58 l +305.244 331 l +305.467 327.181 l +305.69 346.493 l +305.914 338.595 l +306.137 327.114 l +306.36 352.059 l +306.583 316.627 l +306.806 343.06 l +307.03 329.841 l +307.253 321.964 l +307.476 336.866 l +307.699 347.602 l +307.922 354.316 l +308.146 336.946 l +308.369 322.887 l +308.592 362.058 l +308.815 316.073 l +309.038 328.783 l +309.262 327.407 l +309.485 374.518 l +309.708 316.996 l +309.931 330.971 l +310.154 316.038 l +310.378 319.788 l +310.601 338.469 l +310.824 331.564 l +311.047 334.343 l +311.27 327.744 l +311.494 334.267 l +311.717 317.744 l +311.94 337.647 l +312.163 357.794 l +312.386 342.906 l +312.61 343.308 l +312.833 317.86 l +313.056 347.258 l +313.279 360.77 l +313.502 342.59 l +313.726 342.703 l +313.949 321.632 l +314.172 317.549 l +314.395 361.978 l +314.618 313.212 l +314.842 324.343 l +315.065 354.219 l +315.288 355.833 l +315.511 336.122 l +315.734 340.851 l +315.958 337.99 l +316.181 332.109 l +316.404 332.801 l +316.627 319.476 l +316.85 333.929 l +317.074 349.205 l +317.297 346.42 l +317.52 343.923 l +317.743 310.543 l +317.966 348.657 l +318.19 316.118 l +318.413 350.226 l +318.636 319.656 l +318.859 325.134 l +319.082 361.289 l +319.306 327.606 l +319.529 334.003 l +319.752 307.26 l +319.975 355.631 l +320.198 336.603 l +320.422 367.482 l +320.645 342.395 l +320.868 351.4 l +321.091 360.606 l +321.314 345.596 l +321.538 340.876 l +321.761 354.075 l +321.984 308.216 l +322.207 347.214 l +322.43 339.453 l +322.654 345.942 l +322.877 343.415 l +323.1 327.141 l +323.323 331.438 l +323.546 355.92 l +323.77 328.817 l +323.993 334.053 l +324.216 319.017 l +324.439 349.129 l +324.662 322.677 l +324.886 334.029 l +325.109 346.484 l +325.332 329.639 l +325.555 333.651 l +325.778 328.797 l +326.002 346.382 l +326.225 335.64 l +326.448 334.254 l +326.671 358.872 l +326.894 320.586 l +327.118 312.453 l +327.341 338.574 l +327.564 352.676 l +327.787 352.808 l +328.01 344.285 l +328.234 344.657 l +328.457 320.255 l +328.68 349.331 l +328.903 330.282 l +329.126 328.867 l +329.35 345.112 l +329.573 327.696 l +329.796 318.406 l +330.019 329.346 l +330.242 324.186 l +330.466 332.629 l +330.689 355.999 l +330.912 345.659 l +331.135 319.958 l +331.358 333.716 l +331.582 335.556 l +331.805 326.206 l +332.028 358.685 l +332.251 352.968 l +332.474 348.436 l +332.698 340.1 l +332.921 344.861 l +333.144 323.043 l +333.367 356.896 l +333.59 360.004 l +333.814 341.33 l +334.037 332.308 l +334.26 329.097 l +334.483 367.638 l +334.706 329.19 l +334.93 362.649 l +335.153 320.169 l +335.376 348.351 l +335.599 335.668 l +335.822 339.654 l +336.046 310.096 l +336.269 339.2 l +336.492 343.709 l +336.715 345.749 l +336.938 331.542 l +337.162 361.602 l +337.385 330.888 l +337.608 335.862 l +337.831 327.815 l +338.054 344.335 l +338.278 345.547 l +338.501 342.602 l +338.724 315.109 l +338.947 325.451 l +339.17 321.092 l +339.394 331.665 l +339.617 331.956 l +339.84 330.077 l +340.063 336.91 l +340.286 332.127 l +340.51 336.394 l +340.733 339.446 l +340.956 339.851 l +341.179 303.408 l +341.402 337.403 l +341.626 334.602 l +341.849 304.579 l +342.072 344.378 l +342.295 307.913 l +342.518 347.679 l +342.742 351.263 l +342.965 329.827 l +343.188 331.604 l +343.411 328.064 l +343.634 338.154 l +343.858 331.114 l +344.081 348.272 l +344.304 324.717 l +344.527 322.254 l +344.75 348.18 l +344.974 327.567 l +345.197 341.761 l +345.42 343.466 l +345.643 324.291 l +345.866 344.502 l +346.09 335.6 l +346.313 322.404 l +346.536 348.532 l +346.759 324.672 l +346.982 316.037 l +347.206 350.248 l +347.429 332.067 l +347.652 322.902 l +347.875 338.719 l +348.098 341.806 l +348.322 317.037 l +348.545 322.961 l +348.768 321.105 l +348.991 328.646 l +349.214 338.52 l +349.438 337.784 l +349.661 335.21 l +349.884 342.229 l +350.107 329.444 l +350.33 354.698 l +350.554 345.616 l +350.777 332.765 l +351 331.475 l +351.223 339.607 l +351.446 345.425 l +351.67 330.91 l +351.893 338.37 l +352.116 331.685 l +352.339 339.535 l +352.562 348.921 l +352.786 336.002 l +353.009 345.627 l +353.232 332.139 l +353.455 319.213 l +353.678 347.338 l +353.902 342.908 l +354.125 344.351 l +354.348 348.713 l +354.571 338.428 l +354.794 339.203 l +355.018 350.594 l +355.241 345.493 l +355.464 343.702 l +355.687 342.104 l +355.91 324.186 l +356.134 335.92 l +356.357 344.951 l +356.58 332.242 l +356.803 336.683 l +357.026 327.379 l +357.25 329.471 l +357.473 325.413 l +357.696 327.871 l +357.919 314.255 l +358.142 343.901 l +358.366 315.883 l +358.589 318.279 l +358.812 324.741 l +359.035 329.376 l +359.258 333.523 l +359.482 318.066 l +359.705 331.007 l +359.928 338.59 l +360.151 339.678 l +360.374 335.271 l +360.598 350.808 l +360.821 333.189 l +361.044 339.197 l +361.267 342.552 l +361.49 336.44 l +361.714 309.72 l +361.937 307.535 l +362.16 353.297 l +362.383 321.189 l +362.606 349.037 l +362.83 355.509 l +363.053 344.248 l +363.276 337.325 l +363.499 349.905 l +363.722 349.946 l +363.946 355.208 l +364.169 334.098 l +364.392 347.008 l +364.615 324.678 l +364.838 342.801 l +365.062 369.52 l +365.285 300.219 l +365.508 326.013 l +365.731 319.382 l +365.954 331.914 l +366.178 317.822 l +366.401 345.636 l +366.624 323.022 l +366.847 311.834 l +367.07 352.071 l +367.294 330.882 l +367.517 334.241 l +367.74 322.18 l +367.963 323.275 l +368.186 324.258 l +368.41 358.574 l +368.633 325.75 l +368.856 336.771 l +369.079 316.134 l +369.302 345.839 l +369.526 350.754 l +369.749 325.145 l +369.972 338.099 l +370.195 309.539 l +370.418 326.676 l +370.642 342.473 l +370.865 362.874 l +371.088 334.076 l +371.311 343.382 l +371.534 337.398 l +371.758 339.545 l +371.981 331.102 l +372.204 354.511 l +372.427 326.722 l +372.65 349.888 l +372.874 321.117 l +373.097 343.276 l +373.32 345.991 l +373.543 326.371 l +373.766 329.03 l +373.99 317.246 l +374.213 332.209 l +374.436 324.111 l +374.659 339.967 l +374.882 350.141 l +375.106 336.721 l +375.329 351.303 l +375.552 350.845 l +375.775 331.783 l +375.998 343.33 l +376.222 338.738 l +376.445 341.332 l +376.668 339.321 l +376.891 340.772 l +377.114 347.125 l +377.338 333.236 l +377.561 353.678 l +377.784 351.177 l +378.007 360.649 l +378.23 324.241 l +378.454 344.438 l +378.677 347.913 l +378.9 350.072 l +379.123 330.231 l +379.346 351.779 l +379.57 343.849 l +379.793 329.897 l +380.016 333.59 l +380.239 310.529 l +380.462 349.487 l +380.686 330.022 l +380.909 332.823 l +381.132 339.518 l +381.355 343.753 l +381.578 339.797 l +381.802 343.664 l +382.025 332.297 l +382.248 332.129 l +382.471 315.53 l +382.694 341.334 l +382.918 341.823 l +383.141 326.733 l +383.364 343.623 l +383.587 350.304 l +383.81 341.363 l +384.034 327.817 l +384.257 352.949 l +384.48 353.585 l +384.703 339.028 l +384.926 342.112 l +385.15 319.612 l +385.373 333.318 l +385.596 342.457 l +385.819 331.12 l +386.042 354.485 l +386.266 359.397 l +386.489 324.195 l +386.712 326.801 l +386.935 335.046 l +387.158 336.431 l +387.382 329.986 l +387.605 378.741 l +387.828 338.462 l +388.051 338.917 l +388.274 363.918 l +388.498 343.556 l +388.721 342.032 l +388.944 339.495 l +389.167 349.209 l +389.39 325.554 l +389.614 353.379 l +389.837 321.828 l +390.06 360.297 l +390.283 344.456 l +390.506 333.569 l +390.73 331.998 l +390.953 350.702 l +391.176 342.57 l +391.399 318.781 l +391.622 340.877 l +391.846 336.324 l +392.069 309.269 l +392.292 353.147 l +392.515 355.783 l +392.738 328.682 l +392.962 334.351 l +393.185 339.066 l +393.408 354.342 l +393.631 327.779 l +393.854 353.685 l +394.078 332.824 l +394.301 326.864 l +394.524 337.89 l +394.747 335.571 l +394.97 322.069 l +395.194 340.551 l +395.417 343.749 l +395.64 330.439 l +395.863 330.091 l +396.086 341.98 l +396.31 356.202 l +396.533 342.755 l +396.756 334.476 l +396.979 332.729 l +397.202 326.471 l +397.426 359.182 l +397.649 353.339 l +397.872 324.696 l +398.095 360.583 l +398.318 328.966 l +398.542 333.307 l +398.765 336.327 l +398.988 317.322 l +399.211 340.387 l +399.434 340.219 l +399.658 350.714 l +399.881 329.291 l +400.104 325.135 l +400.327 317.289 l +400.55 336.249 l +400.774 372.116 l +400.997 338.91 l +401.22 327.852 l +401.443 351.741 l +401.666 323.742 l +401.89 344.295 l +402.113 343.136 l +402.336 346.782 l +402.559 333.666 l +402.782 335.209 l +403.006 332.108 l +403.229 312.639 l +403.452 346.948 l +403.675 334.669 l +403.898 328.678 l +404.122 364.193 l +404.345 354.314 l +404.568 333.304 l +404.791 337.864 l +405.014 343.507 l +405.238 349.804 l +405.461 355.662 l +405.684 331.263 l +405.907 344.959 l +406.13 321.927 l +406.354 337.865 l +406.577 335.393 l +406.8 335.966 l +407.023 350.907 l +407.246 334.601 l +407.47 355.665 l +407.693 326.423 l +407.916 336.051 l +408.139 335.544 l +408.362 366.255 l +408.586 355.489 l +408.809 382.795 l +409.032 339.942 l +409.255 342.802 l +409.478 352.075 l +409.702 364.71 l +409.925 329.357 l +410.148 332.505 l +410.371 334.92 l +410.594 357.053 l +410.818 350.181 l +411.041 318.589 l +411.264 331.783 l +411.487 346.179 l +411.71 355.509 l +411.934 332.587 l +412.157 351.417 l +412.38 359.684 l +412.603 334.546 l +412.826 322.5 l +413.05 339.74 l +413.273 337.398 l +413.496 330.116 l +413.719 336.806 l +413.942 338.223 l +414.166 330.89 l +414.389 311.292 l +414.612 354.124 l +414.835 337.695 l +415.058 337.538 l +415.282 358.289 l +415.505 349.32 l +415.728 333.121 l +415.951 329.708 l +416.174 354.374 l +416.398 326.543 l +416.621 337.888 l +416.844 322.537 l +417.067 338.439 l +417.29 340.133 l +417.514 343.772 l +417.737 341.869 l +417.96 325.37 l +418.183 346.094 l +418.406 329.788 l +418.63 318.307 l +418.853 357.703 l +419.076 343.239 l +419.299 342.568 l +419.522 331.407 l +419.746 312.028 l +419.969 313.136 l +420.192 357.608 l +420.415 357.818 l +420.638 335.163 l +420.862 349.162 l +421.085 345.134 l +421.308 336.521 l +421.531 365.273 l +421.754 348.831 l +421.978 336.831 l +422.201 343.06 l +422.424 329.763 l +422.647 342.583 l +422.87 361.212 l +423.094 365.014 l +423.317 337.923 l +423.54 335.517 l +423.763 318.963 l +423.986 320.31 l +424.21 346.875 l +424.433 350.864 l +424.656 323.903 l +424.879 338.234 l +425.102 343.468 l +425.326 329.093 l +425.549 343.535 l +425.772 350.986 l +425.995 340.598 l +426.218 338.7 l +426.442 362.585 l +426.665 329.111 l +426.888 349.895 l +427.111 342.036 l +427.334 336.702 l +427.558 331.335 l +427.781 333.115 l +428.004 335.317 l +428.227 329.131 l +428.45 351.261 l +428.674 353.725 l +428.897 355.015 l +429.12 341.745 l +429.343 326.953 l +429.566 321.361 l +429.79 339.079 l +430.013 346.386 l +430.236 348.173 l +430.459 351.335 l +430.682 342.831 l +430.906 340.547 l +431.129 352.517 l +431.352 356.82 l +431.575 309.263 l +431.798 330.996 l +432.022 338.497 l +432.245 333.947 l +432.468 350.936 l +432.691 340.106 l +432.914 340.041 l +433.138 337.313 l +433.361 349.367 l +433.584 329.404 l +433.807 323.295 l +434.03 345.939 l +434.254 349.698 l +434.477 338.947 l +434.7 336.765 l +434.923 340.938 l +435.146 340.505 l +435.37 348.69 l +435.593 321.546 l +435.816 334.413 l +436.039 346.893 l +436.262 340.784 l +436.486 342.825 l +436.709 350.284 l +436.932 359.571 l +437.155 331.421 l +437.378 329.794 l +437.602 328.982 l +437.825 323.306 l +438.048 331.495 l +438.271 347.601 l +438.494 326.604 l +438.718 323.948 l +438.941 363.343 l +439.164 333.016 l +439.387 347.915 l +439.61 343.859 l +439.834 327.573 l +440.057 364.468 l +440.28 332.152 l +440.503 328.082 l +440.726 343.484 l +440.95 350.037 l +441.173 349.039 l +441.396 350.269 l +441.619 331.466 l +441.842 340.272 l +442.066 344.412 l +442.289 329.665 l +442.512 329.382 l +442.735 335.609 l +442.958 317.383 l +443.182 342.891 l +443.405 351.238 l +443.628 350.029 l +443.851 337.727 l +444.074 325.766 l +444.298 329.566 l +444.521 336.462 l +444.744 327.819 l +444.967 331.615 l +445.19 339.85 l +445.414 354.488 l +445.637 357.73 l +445.86 333.506 l +446.083 321.466 l +446.306 325.83 l +446.53 351.474 l +446.753 344.86 l +446.976 345.15 l +447.199 341.029 l +447.422 334.456 l +447.646 339.374 l +447.869 334.843 l +448.092 331.549 l +448.315 345.289 l +448.538 343.775 l +448.762 360.267 l +448.985 311.776 l +449.208 335.554 l +449.431 331.493 l +449.654 338.834 l +449.878 338.187 l +450.101 313.295 l +450.324 332.07 l +450.547 313.858 l +450.77 328.359 l +450.994 338.494 l +451.217 321.583 l +451.44 339.228 l +451.663 344.316 l +451.886 338.161 l +452.11 349.841 l +452.333 362.892 l +452.556 367.107 l +452.779 342.522 l +453.002 354.165 l +453.226 366.78 l +453.449 329.691 l +453.672 334.678 l +453.895 345.446 l +454.118 335.553 l +454.342 333.359 l +454.565 349.94 l +454.788 334.055 l +455.011 356.182 l +455.234 325.537 l +455.458 333.26 l +455.681 338.455 l +455.904 350.019 l +456.127 337.909 l +456.35 318.148 l +456.574 341.024 l +456.797 321.711 l +457.02 353.255 l +457.243 322.596 l +457.466 355.708 l +457.69 338.347 l +457.913 338.569 l +458.136 361.833 l +458.359 308.397 l +458.582 354.364 l +458.806 358.028 l +459.029 331.713 l +459.252 350.236 l +459.475 314.828 l +459.698 334.012 l +459.922 341.091 l +460.145 352.946 l +460.368 328.968 l +460.591 349.208 l +460.814 347.69 l +461.038 325.207 l +461.261 338.213 l +461.484 347.53 l +461.707 344.159 l +461.93 325.916 l +462.154 339.867 l +462.377 350.345 l +462.6 342.03 l +462.823 340.978 l +463.046 340.665 l +463.27 335.247 l +463.493 344.036 l +463.716 328.293 l +463.939 326.79 l +464.162 327.152 l +464.386 329.003 l +464.609 337.233 l +464.832 349.558 l +465.055 322.761 l +465.278 332.941 l +465.502 344.984 l +465.725 324.921 l +465.948 332.388 l +466.171 334.749 l +466.394 330.347 l +466.618 334.589 l +466.841 341.843 l +467.064 356.167 l +467.287 349.233 l +467.51 342.587 l +467.734 353.395 l +467.957 323.19 l +468.18 329.288 l +468.403 335.44 l +468.626 327.776 l +468.85 360.019 l +469.073 307.892 l +469.296 344.181 l +469.519 340.123 l +469.742 341.02 l +469.966 310.813 l +470.189 351.684 l +470.412 345.132 l +470.635 330.161 l +470.858 352.154 l +471.082 331.684 l +471.305 342.262 l +471.528 331.638 l +471.751 349.052 l +471.974 360.324 l +472.198 346.121 l +472.421 342.629 l +472.644 323.926 l +472.867 332.736 l +473.09 341.165 l +473.314 327.071 l +473.537 304.225 l +473.76 340.758 l +473.983 318.992 l +474.206 335.588 l +474.43 344.83 l +474.653 339.935 l +474.876 330.587 l +475.099 355.905 l +475.322 331.945 l +475.546 352.535 l +475.769 345.975 l +475.992 339.348 l +476.215 336.524 l +476.438 342.411 l +476.662 344.179 l +476.885 344.826 l +477.108 343.16 l +477.331 360.812 l +477.554 327.861 l +477.778 355.028 l +478.001 338.847 l +478.224 361.843 l +478.447 333.884 l +478.67 340.868 l +478.894 335.385 l +479.117 336.385 l +479.34 348.073 l +479.563 339.996 l +479.786 336.728 l +480.01 346.128 l +480.233 329.555 l +480.456 343.87 l +480.679 336.453 l +480.902 336.337 l +481.126 333.404 l +481.349 323.719 l +481.572 346.32 l +481.795 343.885 l +482.018 334.745 l +482.242 357.002 l +482.465 327.387 l +482.688 342.875 l +482.911 320.223 l +483.134 320.195 l +483.358 349.986 l +483.581 331.429 l +483.804 348.819 l +484.027 337.682 l +484.25 338.598 l +484.474 336.99 l +484.697 356.363 l +484.92 357.007 l +485.143 344.117 l +485.366 314.764 l +485.59 321.8 l +485.813 342.413 l +486.036 336.491 l +486.259 352.88 l +486.482 323.798 l +486.706 341.903 l +486.929 338.724 l +487.152 324.962 l +487.375 355.256 l +487.598 346.868 l +487.822 335.57 l +488.045 332.471 l +488.268 326.059 l +488.491 347.179 l +488.714 322.919 l +488.938 359.718 l +489.161 356.044 l +489.384 339.881 l +489.607 328.537 l +489.83 333.537 l +490.054 336.018 l +490.277 354.447 l +490.5 343.534 l +490.723 321.087 l +490.946 333.489 l +491.17 355.305 l +491.393 320.488 l +491.616 345.725 l +491.839 320.056 l +492.062 338.412 l +492.286 312.87 l +492.509 353.689 l +492.732 359.81 l +492.955 333.285 l +493.178 335.729 l +493.402 329.929 l +493.625 333.34 l +493.848 330.146 l +494.071 314.254 l +494.294 337.701 l +494.518 327.199 l +494.741 336.761 l +494.964 344.36 l +495.187 344.755 l +495.41 359.295 l +495.634 350.217 l +495.857 334.885 l +496.08 348.382 l +496.303 352.582 l +496.526 320.667 l +496.75 323.345 l +496.973 365.286 l +497.196 339.361 l +497.419 340.728 l +497.642 331.536 l +497.866 337.232 l +498.089 341.388 l +498.312 324.588 l +498.535 340.426 l +498.758 321.532 l +498.982 324.598 l +499.205 343.676 l +499.428 353.462 l +499.651 333.866 l +499.874 337.451 l +500.098 348.102 l +500.321 337.544 l +500.544 326.594 l +500.767 317.122 l +500.99 339.325 l +501.214 337.431 l +501.437 315.806 l +501.66 333.344 l +501.883 348.101 l +502.106 321.981 l +502.33 340.688 l +502.553 322.178 l +502.776 349.963 l +502.999 344.555 l +503.222 345.451 l +503.446 348.446 l +503.669 330.552 l +503.892 345.492 l +504.115 336.039 l +504.338 336.214 l +504.562 332.089 l +504.785 323.309 l +505.008 359.35 l +505.231 345.622 l +505.454 327.096 l +505.678 318.799 l +505.901 332.482 l +506.124 324.698 l +506.347 335.364 l +506.57 339.621 l +506.794 336.426 l +507.017 321.756 l +507.24 330.705 l +507.463 335.37 l +507.686 327.601 l +507.91 317.709 l +508.133 359.025 l +508.356 308.691 l +508.579 332.064 l +508.802 316.673 l +509.026 342.593 l +509.249 345.179 l +509.472 343.938 l +509.695 332.244 l +509.918 329.11 l +510.142 344.638 l +510.365 329.422 l +510.588 345.573 l +510.811 340.838 l +511.034 338.03 l +511.258 343.279 l +511.481 345.625 l +511.704 324.534 l +511.927 342.465 l +512.15 341.152 l +512.374 358.593 l +512.597 340.887 l +512.82 341.205 l +513.043 340.357 l +513.266 359.644 l +513.49 336.32 l +513.713 327.687 l +513.936 337.017 l +514.159 335.425 l +514.382 352.025 l +514.606 326.597 l +514.829 325.612 l +515.052 346.586 l +515.275 336.735 l +515.498 345.508 l +515.722 332.958 l +515.945 336.936 l +516.168 351.103 l +516.391 343.718 l +516.614 358.472 l +516.838 332.319 l +517.061 345.018 l +517.284 338.213 l +517.507 344.314 l +517.73 337.848 l +517.954 337.126 l +518.177 331.873 l +stroke +grestore +0.000 setgray +/BitstreamVeraSans-Roman findfont +12.000 scalefont +setfont +68.977 274.075 m +0 0.172 rmoveto +(0) show +0.500 setlinewidth +0 setlinecap +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +183.6 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +183.6 388.8 o +180.764 274.231 m +0 0.172 rmoveto +(5) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +295.2 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +295.2 388.8 o +288.614 274.075 m +0 0.172 rmoveto +(10) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +406.8 287.153 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +406.8 388.8 o +400.339 274.231 m +0 0.172 rmoveto +(15) show +511.595 274.075 m +0 0.172 rmoveto +(20) show +57.297 282.778 m +(-4) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 299.859 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 299.859 o +57.594 295.32 m +0 0.172 rmoveto +(-3) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 312.565 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 312.565 o +57.828 308.112 m +(-2) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 325.271 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 325.271 o +57.734 320.896 m +(-1) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 337.976 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 337.976 o +61.953 333.437 m +0 0.172 rmoveto +(0) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 350.682 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 350.682 o +62.781 346.307 m +(1) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 363.388 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 363.388 o +62.438 358.935 m +(2) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 376.094 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 376.094 o +62.25 371.555 m +0 0.172 rmoveto +(3) show +61.625 384.425 m +(4) show +52.297 317.281 m +gsave +90 rotate +0 2.5 rmoveto +(input x) show +grestore +1.000 setlinewidth +2 setlinecap +72 287.153 m +518.4 287.153 l +518.4 388.8 l +72 388.8 l +72 287.153 l +stroke +gsave +72 165.176 m +72 266.824 l +518.4 266.824 l +518.4 165.176 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +0.000 0.000 1.000 setrgbcolor +gsave +446.4 101.647 72 165.176 clipbox +72 223.261 m +72.2232 223.313 l +72.4464 223.374 l +72.6696 223.384 l +72.8928 223.368 l +73.116 223.26 l +73.3392 223.193 l +73.5624 222.993 l +73.7856 222.888 l +74.0088 222.623 l +74.232 222.436 l +74.4552 222.404 l +74.6784 222.238 l +74.9016 221.999 l +75.1248 221.927 l +75.348 221.777 l +75.5712 221.642 l +75.7944 221.359 l +76.0176 220.896 l +76.2408 220.602 l +76.464 220.015 l +76.6872 219.382 l +76.9104 218.873 l +77.1336 218.404 l +77.3568 218.046 l +77.58 217.697 l +77.8032 217.24 l +78.0264 216.832 l +78.2496 216.252 l +78.4728 215.605 l +78.696 215.107 l +78.9192 214.592 l +79.1424 214.3 l +79.3656 214.05 l +79.5888 213.556 l +79.812 212.994 l +80.0352 212.477 l +80.2584 211.971 l +80.4816 211.545 l +80.7048 211.157 l +80.928 210.546 l +81.1512 210.114 l +81.3744 209.658 l +81.5976 209.193 l +81.8208 208.602 l +82.044 208.213 l +82.2672 207.999 l +82.4904 207.817 l +82.7136 207.675 l +82.9368 207.532 l +83.16 207.412 l +83.3832 207.271 l +83.6064 207.181 l +83.8296 207.069 l +84.0528 206.951 l +84.276 206.933 l +84.4992 207.01 l +84.7224 207.141 l +84.9456 207.186 l +85.1688 207.451 l +85.392 207.986 l +85.6152 208.413 l +85.8384 208.697 l +86.0616 208.974 l +86.2848 209.383 l +86.508 209.581 l +86.7312 209.565 l +86.9544 209.362 l +87.1776 208.998 l +87.4008 208.664 l +87.624 208.201 l +87.8472 207.775 l +88.0704 207.317 l +88.2936 206.778 l +88.5168 206.429 l +88.74 206.291 l +88.9632 206.137 l +89.1864 206.002 l +89.4096 205.864 l +89.6328 205.857 l +89.856 205.75 l +90.0792 205.749 l +90.3024 205.712 l +90.5256 205.769 l +90.7488 205.862 l +90.972 205.987 l +91.1952 206.033 l +91.4184 205.751 l +91.6416 205.637 l +91.8648 205.458 l +92.088 205.277 l +92.3112 205.256 l +92.5344 205.098 l +92.7576 205.054 l +92.9808 205.168 l +93.204 205.249 l +93.4272 205.327 l +93.6504 205.424 l +93.8736 205.607 l +94.0968 206.008 l +94.32 206.336 l +94.5432 206.702 l +94.7664 207.028 l +94.9896 207.379 l +95.2128 207.628 l +95.436 207.977 l +95.6592 208.195 l +95.8824 208.56 l +96.1056 208.713 l +96.3288 208.734 l +96.552 208.627 l +96.7752 208.466 l +96.9984 208.357 l +97.2216 208.272 l +97.4448 208.218 l +97.668 208.108 l +97.8912 207.904 l +98.1144 207.814 l +98.3376 207.494 l +98.5608 207.17 l +98.784 206.925 l +99.0072 206.716 l +99.2304 206.482 l +99.4536 206.176 l +99.6768 205.73 l +99.9 205.299 l +100.123 204.87 l +100.346 204.435 l +100.57 203.96 l +100.793 203.371 l +101.016 202.873 l +101.239 202.273 l +101.462 201.846 l +101.686 201.492 l +101.909 201.109 l +102.132 200.844 l +102.355 200.417 l +102.578 200.065 l +102.802 199.772 l +103.025 199.423 l +103.248 199.155 l +103.471 198.866 l +103.694 198.568 l +103.918 198.177 l +104.141 197.967 l +104.364 197.837 l +104.587 197.693 l +104.81 197.594 l +105.034 197.514 l +105.257 197.168 l +105.48 196.763 l +105.703 196.382 l +105.926 195.856 l +106.15 195.427 l +106.373 195.15 l +106.596 195.011 l +106.819 194.958 l +107.042 194.838 l +107.266 194.761 l +107.489 194.568 l +107.712 194.452 l +107.935 194.387 l +108.158 194.404 l +108.382 194.227 l +108.605 194.052 l +108.828 194.111 l +109.051 194.143 l +109.274 194.298 l +109.498 194.433 l +109.721 194.444 l +109.944 194.413 l +110.167 194.239 l +110.39 194.042 l +110.614 193.846 l +110.837 193.966 l +111.06 194.059 l +111.283 194.237 l +111.506 194.333 l +111.73 194.435 l +111.953 194.625 l +112.176 194.849 l +112.399 194.945 l +112.622 195.041 l +112.846 195.252 l +113.069 195.417 l +113.292 195.589 l +113.515 195.659 l +113.738 195.822 l +113.962 195.945 l +114.185 196.212 l +114.408 196.556 l +114.631 196.813 l +114.854 196.909 l +115.078 196.839 l +115.301 196.791 l +115.524 196.547 l +115.747 196.184 l +115.97 195.701 l +116.194 195.308 l +116.417 195.023 l +116.64 194.745 l +116.863 194.433 l +117.086 194.199 l +117.31 194.142 l +117.533 194.087 l +117.756 193.936 l +117.979 193.911 l +118.202 193.776 l +118.426 193.423 l +118.649 193.016 l +118.872 192.601 l +119.095 192.129 l +119.318 191.667 l +119.542 191.256 l +119.765 190.828 l +119.988 190.4 l +120.211 190.051 l +120.434 189.664 l +120.658 189.53 l +120.881 189.426 l +121.104 189.513 l +121.327 189.465 l +121.55 189.445 l +121.774 189.534 l +121.997 189.579 l +122.22 189.453 l +122.443 189.386 l +122.666 189.394 l +122.89 189.545 l +123.113 189.866 l +123.336 190.019 l +123.559 190.244 l +123.782 190.478 l +124.006 190.536 l +124.229 190.746 l +124.452 190.938 l +124.675 191.187 l +124.898 191.395 l +125.122 191.532 l +125.345 191.652 l +125.568 191.742 l +125.791 191.653 l +126.014 191.725 l +126.238 191.78 l +126.461 191.923 l +126.684 192.139 l +126.907 192.324 l +127.13 192.555 l +127.354 192.643 l +127.577 192.84 l +127.8 193.001 l +128.023 192.975 l +128.246 192.65 l +128.47 192.511 l +128.693 192.328 l +128.916 192.11 l +129.139 192.05 l +129.362 191.687 l +129.586 191.393 l +129.809 191.16 l +130.032 190.844 l +130.255 190.48 l +130.478 190.231 l +130.702 190.074 l +130.925 189.887 l +131.148 189.737 l +131.371 189.942 l +131.594 190.14 l +131.818 190.478 l +132.041 190.926 l +132.264 191.381 l +132.487 191.794 l +132.71 192.109 l +132.934 192.404 l +133.157 192.609 l +133.38 192.928 l +133.603 193.316 l +133.826 193.634 l +134.05 193.874 l +134.273 194.091 l +134.496 194.371 l +134.719 194.545 l +134.942 194.728 l +135.166 194.928 l +135.389 195.181 l +135.612 195.302 l +135.835 195.356 l +136.058 195.539 l +136.282 195.606 l +136.505 195.833 l +136.728 196.36 l +136.951 196.795 l +137.174 197.329 l +137.398 197.617 l +137.621 198.106 l +137.844 198.566 l +138.067 198.954 l +138.29 199.449 l +138.514 199.711 l +138.737 200.041 l +138.96 200.506 l +139.183 201.128 l +139.406 201.736 l +139.63 202.104 l +139.853 202.475 l +140.076 202.699 l +140.299 203.068 l +140.522 203.682 l +140.746 204.526 l +140.969 205.499 l +141.192 206.301 l +141.415 207.151 l +141.638 207.877 l +141.862 208.539 l +142.085 209.365 l +142.308 210.043 l +142.531 210.849 l +142.754 211.732 l +142.978 212.603 l +143.201 213.538 l +143.424 214.59 l +143.647 215.579 l +143.87 216.559 l +144.094 217.392 l +144.317 218.3 l +144.54 218.904 l +144.763 219.6 l +144.986 220.287 l +145.21 220.86 l +145.433 221.609 l +145.656 222.26 l +145.879 222.886 l +146.102 223.384 l +146.326 223.888 l +146.549 224.34 l +146.772 224.97 l +146.995 225.572 l +147.218 226.301 l +147.442 226.875 l +147.665 227.548 l +147.888 228.246 l +148.111 228.947 l +148.334 229.52 l +148.558 230.035 l +148.781 230.632 l +149.004 231.208 l +149.227 231.734 l +149.45 231.982 l +149.674 232.324 l +149.897 232.567 l +150.12 232.815 l +150.343 233.06 l +150.566 233.154 l +150.79 233.312 l +151.013 233.541 l +151.236 233.918 l +151.459 234.437 l +151.682 235.041 l +151.906 235.545 l +... [truncated message content] |
From: <jd...@us...> - 2007-10-26 17:43:54
|
Revision: 4013 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4013&view=rev Author: jdh2358 Date: 2007-10-26 10:43:50 -0700 (Fri, 26 Oct 2007) Log Message: ----------- added some figs for convolution example Added Paths: ----------- trunk/py4science/workbook/fig/convolve_deltas.eps trunk/py4science/workbook/fig/convolve_deltas.png trunk/py4science/workbook/scripts/ trunk/py4science/workbook/scripts/convolve_deltas.py trunk/py4science/workbook/scripts/convolve_explain.py Added: trunk/py4science/workbook/fig/convolve_deltas.eps =================================================================== --- trunk/py4science/workbook/fig/convolve_deltas.eps (rev 0) +++ trunk/py4science/workbook/fig/convolve_deltas.eps 2007-10-26 17:43:50 UTC (rev 4013) @@ -0,0 +1,780 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Title: convolve_deltas.eps +%%Creator: matplotlib version 0.90.1, http://matplotlib.sourceforge.net/ +%%CreationDate: Fri Oct 26 12:42:28 2007 +%%Orientation: portrait +%%BoundingBox: 18 180 594 612 +%%EndComments +%%BeginProlog +/mpldict 7 dict def +mpldict begin +/m { moveto } bind def +/l { lineto } bind def +/r { rlineto } bind def +/box { +m +1 index 0 r +0 exch r +neg 0 r +closepath +} bind def +/clipbox { +box +clip +newpath +} bind def +/ellipse { +newpath +matrix currentmatrix 7 1 roll +translate +scale +0 0 1 5 3 roll arc +setmatrix +closepath +} bind def +%!PS-Adobe-3.0 Resource-Font +%%Title: Bitstream Vera Sans +%%Copyright: Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. +%%Creator: Converted from TrueType by PPR +25 dict begin +/_d{bind def}bind def +/_m{moveto}_d +/_l{lineto}_d +/_cl{closepath eofill}_d +/_c{curveto}_d +/_sc{7 -1 roll{setcachedevice}{pop pop pop pop pop pop}ifelse}_d +/_e{exec}_d +/FontName /BitstreamVeraSans-Roman def +/PaintType 0 def +/FontMatrix[.001 0 0 .001 0 0]def +/FontBBox[-182 -235 1287 928]def +/FontType 3 def +/Encoding StandardEncoding def +/FontInfo 10 dict dup begin +/FamilyName (Bitstream Vera Sans) def +/FullName (Bitstream Vera Sans) def +/Notice (Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.) def +/Weight (Roman) def +/Version (Release 1.10) def +/ItalicAngle 0.0 def +/isFixedPitch false def +/UnderlinePosition -213 def +/UnderlineThickness 143 def +end readonly def +/CharStrings 7 dict dup begin +/period{318 0 107 0 210 124 _sc +107 124 _m +210 124 _l +210 0 _l +107 0 _l +107 124 _l +_cl}_d +/zero{636 0 66 -13 570 742 _sc +318 664 _m +267 664 229 639 203 589 _c +177 539 165 464 165 364 _c +165 264 177 189 203 139 _c +229 89 267 64 318 64 _c +369 64 407 89 433 139 _c +458 189 471 264 471 364 _c +471 464 458 539 433 589 _c +407 639 369 664 318 664 _c +318 742 _m +399 742 461 709 505 645 _c +548 580 570 486 570 364 _c +570 241 548 147 505 83 _c +461 19 399 -13 318 -13 _c +236 -13 173 19 130 83 _c +87 147 66 241 66 364 _c +66 486 87 580 130 645 _c +173 709 236 742 318 742 _c +_cl}_d +/one{636 0 110 0 544 729 _sc +124 83 _m +285 83 _l +285 639 _l +110 604 _l +110 694 _l +284 729 _l +383 729 _l +383 83 _l +544 83 _l +544 0 _l +124 0 _l +124 83 _l +_cl}_d +/two{{636 0 73 0 536 742 _sc +192 83 _m +536 83 _l +536 0 _l +73 0 _l +73 83 _l +110 121 161 173 226 239 _c +290 304 331 346 348 365 _c +380 400 402 430 414 455 _c +426 479 433 504 433 528 _c +433 566 419 598 392 622 _c +365 646 330 659 286 659 _c +255 659 222 653 188 643 _c +154 632 117 616 78 594 _c +78 694 _l +118 710 155 722 189 730 _c +223 738 255 742 284 742 _c +359 742 419 723 464 685 _c +509 647 532 597 532 534 _c +532 504 526 475 515 449 _c +504 422 484 390 454 354 _c +446 344 420 317 376 272 _c +332 227 271 164 192 83 _c +_cl}_e}_d +/three{{636 0 76 -13 556 742 _sc +406 393 _m +453 383 490 362 516 330 _c +542 298 556 258 556 212 _c +556 140 531 84 482 45 _c +432 6 362 -13 271 -13 _c +240 -13 208 -10 176 -4 _c +144 1 110 10 76 22 _c +76 117 _l +103 101 133 89 166 81 _c +198 73 232 69 268 69 _c +330 69 377 81 409 105 _c +441 129 458 165 458 212 _c +458 254 443 288 413 312 _c +383 336 341 349 287 349 _c +202 349 _l +202 430 _l +291 430 _l +339 430 376 439 402 459 _c +428 478 441 506 441 543 _c +441 580 427 609 401 629 _c +374 649 336 659 287 659 _c +260 659 231 656 200 650 _c +169 644 135 635 98 623 _c +98 711 _l +135 721 170 729 203 734 _c +235 739 266 742 296 742 _c +}_e{370 742 429 725 473 691 _c +517 657 539 611 539 553 _c +539 513 527 479 504 451 _c +481 423 448 403 406 393 _c +_cl}_e}_d +/four{636 0 49 0 580 729 _sc +378 643 _m +129 254 _l +378 254 _l +378 643 _l +352 729 _m +476 729 _l +476 254 _l +580 254 _l +580 172 _l +476 172 _l +476 0 _l +378 0 _l +378 172 _l +49 172 _l +49 267 _l +352 729 _l +_cl}_d +/five{{636 0 77 -13 549 729 _sc +108 729 _m +495 729 _l +495 646 _l +198 646 _l +198 467 _l +212 472 227 476 241 478 _c +255 480 270 482 284 482 _c +365 482 429 459 477 415 _c +525 370 549 310 549 234 _c +549 155 524 94 475 51 _c +426 8 357 -13 269 -13 _c +238 -13 207 -10 175 -6 _c +143 -1 111 6 77 17 _c +77 116 _l +106 100 136 88 168 80 _c +199 72 232 69 267 69 _c +323 69 368 83 401 113 _c +433 143 450 183 450 234 _c +450 284 433 324 401 354 _c +368 384 323 399 267 399 _c +241 399 214 396 188 390 _c +162 384 135 375 108 363 _c +108 729 _l +_cl}_e}_d +end readonly def + +/BuildGlyph + {exch begin + CharStrings exch + 2 copy known not{pop /.notdef}if + true 3 1 roll get exec + end}_d + +/BuildChar { + 1 index /Encoding get exch get + 1 index /BuildGlyph get exec +}_d + +FontName currentdict end definefont pop +%%EOF +end +%%EndProlog +mpldict begin +18 180 translate +576 432 0 0 clipbox +gsave +1.000 setgray +1.000 setlinewidth +0 setlinejoin +2 setlinecap +[] 0 setdash +0 0 m +0 432 l +576 432 l +576 0 l +closepath +gsave +fill +grestore +stroke +grestore +gsave +0.000 setgray +72 43.2 m +72 388.8 l +518.4 388.8 l +518.4 43.2 l +closepath +gsave +1.000 setgray +fill +grestore +stroke +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +69.21 43.2 m +69.21 388.8 l +74.79 388.8 l +74.79 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +91.53 43.2 m +91.53 362.457 l +97.11 362.457 l +97.11 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +113.85 43.2 m +113.85 307.904 l +119.43 307.904 l +119.43 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +136.17 43.2 m +136.17 239.267 l +141.75 239.267 l +141.75 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +158.49 43.2 m +158.49 172.281 l +164.07 172.281 l +164.07 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +180.81 43.2 m +180.81 120.84 l +186.39 120.84 l +186.39 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +203.13 43.2 m +203.13 94.252 l +208.71 94.252 l +208.71 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +225.45 43.2 m +225.45 95.729 l +231.03 95.729 l +231.03 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +247.77 43.2 m +247.77 122.291 l +253.35 122.291 l +253.35 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +270.09 43.2 m +270.09 165.978 l +275.67 165.978 l +275.67 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +292.41 43.2 m +292.41 216 l +297.99 216 l +297.99 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +314.73 43.2 m +314.73 261.261 l +320.31 261.261 l +320.31 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +337.05 43.2 m +337.05 292.723 l +342.63 292.723 l +342.63 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +359.37 43.2 m +359.37 305.099 l +364.95 305.099 l +364.95 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +381.69 43.2 m +381.69 297.61 l +387.27 297.61 l +387.27 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +404.01 43.2 m +404.01 273.718 l +409.59 273.718 l +409.59 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +426.33 43.2 m +426.33 239.993 l +431.91 239.993 l +431.91 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +448.65 43.2 m +448.65 204.446 l +454.23 204.446 l +454.23 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +470.97 43.2 m +470.97 174.705 l +476.55 174.705 l +476.55 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +gsave +gsave +446.4 345.6 72 43.2 clipbox +493.29 43.2 m +493.29 156.455 l +498.87 156.455 l +498.87 43.2 l +closepath +gsave +0.000 0.000 1.000 setrgbcolor +fill +grestore +stroke +grestore +grestore +0.000 0.000 1.000 setrgbcolor +2.000 setlinewidth +gsave +446.4 345.6 72 43.2 clipbox +72 388.8 m +94.32 362.457 l +116.64 307.904 l +138.96 239.267 l +161.28 172.281 l +183.6 120.84 l +205.92 94.252 l +228.24 95.7291 l +250.56 122.291 l +272.88 165.978 l +295.2 216 l +317.52 261.261 l +339.84 292.723 l +362.16 305.099 l +384.48 297.61 l +406.8 273.718 l +429.12 239.993 l +451.44 204.446 l +473.76 174.705 l +496.08 156.455 l +stroke +grestore +0.000 setgray +gsave +446.4 345.6 72 43.2 clipbox +72 43.2 m +518.4 43.2 l +stroke +grestore +/BitstreamVeraSans-Roman findfont +12.000 scalefont +setfont +63.25 30.122 m +0 0.172 rmoveto +(0.0) show +0.500 setlinewidth +0 setlinecap +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +161.28 43.2 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +161.28 388.8 o +152.686 30.122 m +0 0.172 rmoveto +(0.1) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +250.56 43.2 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +250.56 388.8 o +242.013 30.122 m +0 0.172 rmoveto +(0.2) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +339.84 43.2 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +339.84 388.8 o +331.176 30.122 m +0 0.172 rmoveto +(0.3) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +429.12 43.2 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +429.12 388.8 o +420.307 30.122 m +0 0.172 rmoveto +(0.4) show +/o { gsave +newpath +translate +-0.5 0 m +-0.5 4 l +closepath +stroke +grestore } bind def +518.4 43.2 o +/o { gsave +newpath +translate +-0.5 -4 m +-0.5 0 l +closepath +stroke +grestore } bind def +518.4 388.8 o +509.775 30.122 m +0 0.172 rmoveto +(0.5) show +50.5 38.661 m +0 0.172 rmoveto +(0.0) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 129.6 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 129.6 o +50.75 125.061 m +0 0.172 rmoveto +(0.5) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 216 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 216 o +51.016 211.461 m +0 0.172 rmoveto +(1.0) show +/o { gsave +newpath +translate +0 0.5 m +4 0.5 l +closepath +stroke +grestore } bind def +72 302.4 o +/o { gsave +newpath +translate +-4 0.5 m +0 0.5 l +closepath +stroke +grestore } bind def +518.4 302.4 o +51.266 297.939 m +0 0.172 rmoveto +(1.5) show +50.578 384.261 m +0 0.172 rmoveto +(2.0) show +1.000 setlinewidth +2 setlinecap +72 43.2 m +518.4 43.2 l +518.4 388.8 l +72 388.8 l +72 43.2 l +stroke + +end +showpage Added: trunk/py4science/workbook/fig/convolve_deltas.png =================================================================== (Binary files differ) Property changes on: trunk/py4science/workbook/fig/convolve_deltas.png ___________________________________________________________________ Name: svn:mime-type + application/octet-stream Added: trunk/py4science/workbook/scripts/convolve_deltas.py =================================================================== --- trunk/py4science/workbook/scripts/convolve_deltas.py (rev 0) +++ trunk/py4science/workbook/scripts/convolve_deltas.py 2007-10-26 17:43:50 UTC (rev 4013) @@ -0,0 +1,18 @@ +import numpy as npy +from pylab import figure, show + +dt = 0.025 +t = npy.arange(0.0, 0.5, dt) +Nt = len(t) + + +s = npy.exp(-2*t)*npy.cos(2*3*npy.pi*t)+1.0 +fig = figure() +ax = fig.add_subplot(111) +ax.plot(t, s, color='blue', lw=2) +ax.bar(t-dt/8., s, facecolor='blue', width=dt/4.) +ax.axhline(0, color='black', lw=2) +ax.set_xlim(xmin=0) +fig.savefig('convolve_deltas.png', dpi=150) +fig.savefig('convolve_deltas.eps') +show() Added: trunk/py4science/workbook/scripts/convolve_explain.py =================================================================== --- trunk/py4science/workbook/scripts/convolve_explain.py (rev 0) +++ trunk/py4science/workbook/scripts/convolve_explain.py 2007-10-26 17:43:50 UTC (rev 4013) @@ -0,0 +1,48 @@ +import numpy as npy +from pylab import figure, show + +dt = 0.01 +t = npy.arange(0.0, 10.0, dt) +Nt = len(t) + +def impulse_response(t): + 'double exponential response function' + return (npy.exp(-t) - npy.exp(-5*t)) + +i1 = npy.zeros(len(t)) +i2 = npy.zeros(len(t)) +i3 = npy.zeros(len(t)) +r = impulse_response(t) + +ind1, ind2, ind3 = 100, 300, 900 +i1[ind1] = 1 +i2[ind2] = 1.7 +i3[ind3] = 0.6 + +y1 = npy.convolve(i1, r, mode='full')[:Nt] +y2 = npy.convolve(i2, r, mode='full')[:Nt] +y3 = npy.convolve(i3, r, mode='full')[:Nt] + +fig = figure() +ax1 = ax = fig.add_subplot(311) +ax.plot(t, r, 'k', lw=2) +ax.set_ylabel('impulse response') + +ax = fig.add_subplot(312, sharex=ax1) +ax.bar(t[ind1], i1[ind1], facecolor='blue', lw=2, edgecolor='blue', width=3*dt) +ax.bar(t[ind2], i2[ind2], facecolor='green', lw=2, edgecolor='green', width=3*dt) +ax.bar(t[ind3], i3[ind3], facecolor='red', lw=2, edgecolor='red', width=3*dt) +ax.plot(t, y1, color='blue', lw=1, label='input 1') +ax.plot(t, y2, color='green', lw=1, label='input 2') +ax.plot(t, y3, color='red', lw=1, label='input d') +ax.set_ylabel('3 inputs') + + +ax = fig.add_subplot(313, sharex=ax1) +ax.plot(t, y1+y2+y3, color='black', lw=2, label='sum') +ax.set_ylabel('output') +#ax.legend(loc='best') + +fig.savefig('../fig/convolve_inputs.png', dpi=150) +fig.savefig('../fig/convolve_inputs.eps') +show() This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |
From: <md...@us...> - 2007-10-26 17:01:30
|
Revision: 4012 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=4012&view=rev Author: mdboom Date: 2007-10-26 10:01:28 -0700 (Fri, 26 Oct 2007) Log Message: ----------- Added BboxTransformFrom/To for more efficient bounding box transforms. Modified Paths: -------------- branches/transforms/lib/matplotlib/axes.py branches/transforms/lib/matplotlib/figure.py branches/transforms/lib/matplotlib/legend.py branches/transforms/lib/matplotlib/patches.py branches/transforms/lib/matplotlib/projections/polar.py branches/transforms/lib/matplotlib/quiver.py branches/transforms/lib/matplotlib/transforms.py Modified: branches/transforms/lib/matplotlib/axes.py =================================================================== --- branches/transforms/lib/matplotlib/axes.py 2007-10-26 15:58:50 UTC (rev 4011) +++ branches/transforms/lib/matplotlib/axes.py 2007-10-26 17:01:28 UTC (rev 4012) @@ -560,8 +560,7 @@ """ self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() - self.transAxes = mtransforms.BboxTransform( - mtransforms.Bbox.unit(), self.bbox) + self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components @@ -569,8 +568,8 @@ # An affine transformation on the data, generally to limit the # range of the axes - self.transLimits = mtransforms.BboxTransform( - mtransforms.TransformedBbox(self.viewLim, self.transScale), mtransforms.Bbox.unit()) + self.transLimits = mtransforms.BboxTransformFrom( + mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately Modified: branches/transforms/lib/matplotlib/figure.py =================================================================== --- branches/transforms/lib/matplotlib/figure.py 2007-10-26 15:58:50 UTC (rev 4011) +++ branches/transforms/lib/matplotlib/figure.py 2007-10-26 17:01:28 UTC (rev 4012) @@ -19,7 +19,7 @@ from legend import Legend from ticker import FormatStrFormatter -from transforms import Affine2D, Bbox, BboxTransform, TransformedBbox +from transforms import Affine2D, Bbox, BboxTransformTo, TransformedBbox from cm import ScalarMappable from contour import ContourSet from projections import projection_factory, get_projection_names, \ @@ -136,7 +136,7 @@ self.frameon = frameon - self.transFigure = BboxTransform(Bbox.unit(), self.bbox) + self.transFigure = BboxTransformTo(self.bbox) self.figurePatch = Rectangle( xy=(0,0), width=1, height=1, Modified: branches/transforms/lib/matplotlib/legend.py =================================================================== --- branches/transforms/lib/matplotlib/legend.py 2007-10-26 15:58:50 UTC (rev 4011) +++ branches/transforms/lib/matplotlib/legend.py 2007-10-26 17:01:28 UTC (rev 4012) @@ -34,7 +34,7 @@ from patches import Patch, Rectangle, RegularPolygon, Shadow, bbox_artist, draw_bbox from collections import LineCollection, RegularPolyCollection from text import Text -from transforms import Affine2D, Bbox, BboxTransform +from transforms import Affine2D, Bbox, BboxTransformTo def line_cuts_bbox(line, bbox): """ Return True if and only if line cuts bbox. """ @@ -165,7 +165,7 @@ raise TypeError("Legend needs either Axes or Figure as parent") self.parent = parent self._offsetTransform = Affine2D() - self._parentTransform = BboxTransform(Bbox.unit(), parent.bbox) + self._parentTransform = BboxTransformTo(parent.bbox) Artist.set_transform(self, self._offsetTransform + self._parentTransform) if loc is None: Modified: branches/transforms/lib/matplotlib/patches.py =================================================================== --- branches/transforms/lib/matplotlib/patches.py 2007-10-26 15:58:50 UTC (rev 4011) +++ branches/transforms/lib/matplotlib/patches.py 2007-10-26 17:01:28 UTC (rev 4012) @@ -346,8 +346,7 @@ left, right = self.convert_xunits((xy[0], xy[0] + width)) bottom, top = self.convert_yunits((xy[1], xy[1] + height)) self._bbox = transforms.Bbox.from_extents(left, bottom, right, top) - self._rect_transform = transforms.BboxTransform( - transforms.Bbox.unit(), self._bbox) + self._rect_transform = transforms.BboxTransformTo(self._bbox) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def get_path(self): Modified: branches/transforms/lib/matplotlib/projections/polar.py =================================================================== --- branches/transforms/lib/matplotlib/projections/polar.py 2007-10-26 15:58:50 UTC (rev 4011) +++ branches/transforms/lib/matplotlib/projections/polar.py 2007-10-26 17:01:28 UTC (rev 4012) @@ -10,8 +10,8 @@ from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator -from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, BboxTransform, \ - IdentityTransform, Transform, TransformWrapper +from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ + BboxTransformTo, IdentityTransform, Transform, TransformWrapper class PolarAxes(Axes): """ @@ -179,7 +179,7 @@ def _set_lim_and_transforms(self): self.dataLim = Bbox.unit() self.viewLim = Bbox.unit() - self.transAxes = BboxTransform(Bbox.unit(), self.bbox) + self.transAxes = BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components Modified: branches/transforms/lib/matplotlib/quiver.py =================================================================== --- branches/transforms/lib/matplotlib/quiver.py 2007-10-26 15:58:50 UTC (rev 4011) +++ branches/transforms/lib/matplotlib/quiver.py 2007-10-26 17:01:28 UTC (rev 4012) @@ -239,7 +239,7 @@ elif self.coord == 'inches': dx = ax.figure.dpi bb = transforms.Bbox.from_extents(0, 0, dx, dy) - trans = transforms.BboxTransform(Bbox.unit(), bb) + trans = transforms.BboxTransformTo(bb) self.set_transform(trans) else: raise ValueError('unrecognized coordinates') Modified: branches/transforms/lib/matplotlib/transforms.py =================================================================== --- branches/transforms/lib/matplotlib/transforms.py 2007-10-26 15:58:50 UTC (rev 4011) +++ branches/transforms/lib/matplotlib/transforms.py 2007-10-26 17:01:28 UTC (rev 4012) @@ -211,6 +211,9 @@ def __array__(self, *args, **kwargs): return self.get_points() + def is_unit(self): + return list(self.get_points().flatten()) == [0., 0., 1., 1.] + def _get_x0(self): return self.get_points()[0, 0] x0 = property(_get_x0) @@ -1830,6 +1833,86 @@ self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ + + +class BboxTransformTo(Affine2DBase): + """ + BboxTransformSimple linearly transforms points from the unit Bbox + to another Bbox. + """ + is_separable = True + + def __init__(self, boxout): + """ + Create a new BboxTransform that linearly transforms points + from the unit Bbox to boxout. + """ + assert boxout.is_bbox + + Affine2DBase.__init__(self) + self._boxout = boxout + self.set_children(boxout) + self._mtx = None + self._inverted = None + + def __repr__(self): + return "BboxTransformTo(%s)" % (self._boxout) + __str__ = __repr__ + + def get_matrix(self): + if self._invalid: + outl, outb, outw, outh = self._boxout.bounds + if DEBUG and (outw == 0 or outh == 0): + raise ValueError("Transforming to a singular bounding box.") + self._mtx = npy.array([[outw, 0.0, outl], + [ 0.0, outh, outb], + [ 0.0, 0.0, 1.0]], + npy.float_) + self._inverted = None + self._invalid = 0 + return self._mtx + get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ + + +class BboxTransformFrom(Affine2DBase): + """ + BboxTransform linearly transforms points from one Bbox to the unit + Bbox. + """ + is_separable = True + + def __init__(self, boxin): + """ + Create a new BboxTransform that linearly transforms points + from boxin to the unit Bbox. + """ + assert boxin.is_bbox + + Affine2DBase.__init__(self) + self._boxin = boxin + self.set_children(boxin) + self._mtx = None + self._inverted = None + + def __repr__(self): + return "BboxTransformFrom(%s)" % (self._boxin) + __str__ = __repr__ + + def get_matrix(self): + if self._invalid: + inl, inb, inw, inh = self._boxin.bounds + if DEBUG and (inw == 0 or inh == 0): + raise ValueError("Transforming from a singular bounding box.") + x_scale = 1.0 / inw + y_scale = 1.0 / inh + self._mtx = npy.array([[x_scale, 0.0 , (-inl*x_scale)], + [0.0 , y_scale, (-inb*y_scale)], + [0.0 , 0.0 , 1.0 ]], + npy.float_) + self._inverted = None + self._invalid = 0 + return self._mtx + get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class TransformedPath(TransformNode): This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |