Genome coverage, the number of sequencing reads
mapped to a position in a genome, is an insightful indicator of irregularities within sequencing experiments. While the average genome coverage is frequently used within algorithms in computational
genomics, the complete information available in coverage profiles (i.e. histograms over all coverages) is currently not exploited to its full extent. Thus, biases such as fragmented or erroneous reference
genomes often remain unaccounted for. Making this information accessible can improve the quality of sequencing experiments and quantitative analyses.

fitGCP is a framework for fitting mixtures of probability distributions to genome coverage profiles. Besides commonly used distributions, fitGCP uses distributions tailored to account for
common artifacts. The mixture models are iteratively fitted based on the Expectation-Maximization algorithm.

Please find the accompanying paper here:
http://dx.doi.org/10.1093/bioinformatics/btt147

Project Samples

Project Activity

See All Activity >

Categories

Bio-Informatics

License

BSD License

Follow fitGCP

fitGCP Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of fitGCP!

Additional Project Details

Intended Audience

Healthcare Industry, Science/Research, Education

User Interface

Command-line

Programming Language

Python

Related Categories

Python Bio-Informatics Software

Registered

2013-01-28