ExoPlanet provides a graphical interface for the construction, evaluation and application of a Machine Learning model in predictive analysis. With the back-end built using the numpy and scikit-learn libraries, as a toolkit, ExoPlanet couples fast and well tested algorithms, a UI designed over the Qt4 framework, and graphs rendered using Matplotlib to provide the user with a rich interface, rapid analytics and interactive visuals.
ExoPlanet is designed to have a minimal learning curve, allowing researchers to focus on the applicative aspect of Machine Learning rather than their implementation details. It provides algorithms for unsupervised and supervised learning, which may be done with continuous or discrete labels. Post analysis, the toolkit further automates building the visual representations for the trained model.
Features
- Classification
- Clustering
- Regression
- Reciever Operating Characteristic Curve
- Confusion Matrices
- Parallel Co-Ordinates Plot
- Regression Line