I need to create a simple model of 10 words. When I run the script
scripts_pl/RunAll.pl
I get this output to the screen:
MODULE:00verifytrainingfilesO.S.iscasesensitive("A"!="a").Phoneswillbetreatedascasesensitive.Phase1:DICT-Checkingtoseeifthedictandfillerdictagreeswiththephonelistfile.Found6wordsusing10phonesPhase2:DICT-CheckingtomakesuretherearenotduplicateentriesinthedictionaryPhase3:CTL-Checkgeneralformat;utterancelength(mustbepositive);filesexistPhase4:CTL-CheckingnumberoflinesinthetranscriptshouldmatchlinesincontrolfilePhase5:CTL-Determineamountoftrainingdata,seeifn_tied_statesseemsreasonable.EstimatedTotalHoursTraining:0.000875Thisisasmallamountofdata,nocommentatthistimePhase6:TRANSCRIPT-CheckingthatallthewordsinthetranscriptareinthedictionaryWordsindictionary:3Wordsinfillerdictionary:3Phase7:TRANSCRIPT-Checkingthatallthephonesinthetranscriptareinthephonelist,andallphonesinthephonelistappearatleastonceFeaturetypeiss2_4xwhichis4streamsLDA/MLLTonlyhassenseforsinglestreamfeatures,forexample1s_c_d_ddSkippingLDAtrainingFeaturetypeiss2_4xwhichis4streamsLDA/MLLTonlyhassenseforsinglestreamfeatures,forexample1s_c_d_ddSkippingMLLTtrainingMODULE:05VectorQuantizationThisstephad2ERRORmessagesand8044WARNINGmessages.Pleasecheckthelogfilefordetails.MODULE:10TrainingContextIndependentmodelsforforcedalignmentandVTLNSkipped:$ST::CFG_FORCEDALIGNsetto'no'insphinx_train.cfgSkipped:$ST::CFG_VTLNsetto'no'insphinx_train.cfgMODULE:11Force-aligningtranscriptsSkipped:$ST::CFG_FORCEDALIGNsetto'no'insphinx_train.cfgMODULE:12Force-aligningdataforVTLNSkipped:$ST::CFG_VTLNsetto'no'insphinx_train.cfgMODULE:20TrainingContextIndependentmodelsPhase1:Cleaningupdirectories:accumulator...logs...qmanager...models...Phase2:FlatinitializePhase3:Forward-BackwardBaumwelchstartingfor1Gaussian(s),iteration:1(1of1)0%100%Thisstephad18ERRORmessagesand27WARNINGmessages.Pleasecheckthelogfilefordetails.Trainingfailediniteration1Somethingfailed:(/home/zentarim/voice/scripts_pl/20.ci_hmm/slave_convg.pl)zentarim@Sphinx:~/voice$cdlogdir/zentarim@Sphinx:~/voice/logdir$ls05.vector_quantize20.ci_hmmzentarim@Sphinx:~/voice/logdir$ cd 05.vector_quantize/zentarim@Sphinx:~/voice/logdir/05.vector_quantize$lsvoice.kmeans.logvoice.vq.agg_seg.log
# Configuration script for sphinx trainer -*-mode:Perl-*-$CFG_VERBOSE=1;# Determines how much goes to the screen.# These are filled in at configuration time$CFG_DB_NAME="voice";$CFG_BASE_DIR="/home/zentarim/voice";$CFG_SPHINXTRAIN_DIR="/home/zentarim/sphinxtrain-1.0.7";# Directory containing SphinxTrain binaries$CFG_BIN_DIR="$CFG_BASE_DIR/bin";$CFG_GIF_DIR="$CFG_BASE_DIR/gifs";$CFG_SCRIPT_DIR="$CFG_BASE_DIR/scripts_pl";# Experiment name, will be used to name model files and log files$CFG_EXPTNAME="$CFG_DB_NAME";# Audio waveform and feature file information$CFG_WAVFILES_DIR="$CFG_BASE_DIR/wav";$CFG_WAVFILE_EXTENSION='wav';$CFG_WAVFILE_TYPE='mswav';# one of nist, mswav, raw$CFG_FEATFILES_DIR="$CFG_BASE_DIR/feat";$CFG_FEATFILE_EXTENSION='mfc';$CFG_VECTOR_LENGTH=13;$CFG_MIN_ITERATIONS=1;# BW Iterate at least this many times$CFG_MAX_ITERATIONS=10;# BW Don't iterate more than this, somethings likely wrong.# (none/max) Type of AGC to apply to input files$CFG_AGC='none';# (current/none) Type of cepstral mean subtraction/normalization# to apply to input files$CFG_CMN='current';# (yes/no) Normalize variance of input files to 1.0$CFG_VARNORM='no';# (yes/no) Use letter-to-sound rules to guess pronunciations of# unknown words (English, 40-phone specific)$CFG_LTSOOV='no';# (yes/no) Train full covariance matrices$CFG_FULLVAR='no';# (yes/no) Use diagonals only of full covariance matrices for# Forward-Backward evaluation (recommended if CFG_FULLVAR is yes)$CFG_DIAGFULL='no';# (yes/no) Perform vocal tract length normalization in training. This# will result in a "normalized" model which requires VTLN to be done# during decoding as well.$CFG_VTLN='no';# Starting warp factor for VTLN$CFG_VTLN_START=0.80;# Ending warp factor for VTLN$CFG_VTLN_END=1.40;# Step size of warping factors$CFG_VTLN_STEP=0.05;# Directory to write queue manager logs to$CFG_QMGR_DIR="$CFG_BASE_DIR/qmanager";# Directory to write training logs to$CFG_LOG_DIR="$CFG_BASE_DIR/logdir";# Directory for re-estimation counts$CFG_BWACCUM_DIR="$CFG_BASE_DIR/bwaccumdir";# Directory to write model parameter files to$CFG_MODEL_DIR="$CFG_BASE_DIR/model_parameters";# Directory containing transcripts and control files for# speaker-adaptive training$CFG_LIST_DIR="$CFG_BASE_DIR/etc";# Decoding variables for MMIE training$CFG_LANGUAGEWEIGHT="11.5";$CFG_BEAMWIDTH="1e-100";$CFG_WORDBEAM="1e-80";$CFG_LANGUAGEMODEL="$CFG_LIST_DIR/$CFG_DB_NAME.lm.DMP";$CFG_WORDPENALTY="0.2";# Lattice pruning variables$CFG_ABEAM="1e-50";$CFG_NBEAM="1e-10";$CFG_PRUNED_DENLAT_DIR="$CFG_BASE_DIR/pruned_denlat";# MMIE training related variables$CFG_MMIE="no";$CFG_MMIE_MAX_ITERATIONS=5;$CFG_LATTICE_DIR="$CFG_BASE_DIR/lattice";$CFG_MMIE_TYPE="rand";# Valid values are "rand", "best" or "ci"$CFG_MMIE_CONSTE="3.0";$CFG_NUMLAT_DIR="$CFG_BASE_DIR/numlat";$CFG_DENLAT_DIR="$CFG_BASE_DIR/denlat";# Variables used in main training of models$CFG_DICTIONARY="$CFG_LIST_DIR/$CFG_DB_NAME.dic";$CFG_RAWPHONEFILE="$CFG_LIST_DIR/$CFG_DB_NAME.phone";$CFG_FILLERDICT="$CFG_LIST_DIR/$CFG_DB_NAME.filler";$CFG_LISTOFFILES="$CFG_LIST_DIR/${CFG_DB_NAME}_train.fileids";$CFG_TRANSCRIPTFILE="$CFG_LIST_DIR/${CFG_DB_NAME}_train.transcription";$CFG_FEATPARAMS="$CFG_LIST_DIR/feat.params";# Variables used in characterizing models#$CFG_HMM_TYPE = '.cont.'; # Sphinx III$CFG_HMM_TYPE='.semi.';# PocketSphinx and Sphinx II#$CFG_HMM_TYPE = '.ptm.'; # PocketSphinx (larger data sets)if(($CFG_HMM_TYPEne".semi.")and($CFG_HMM_TYPEne".ptm.")and($CFG_HMM_TYPEne".cont.")){die"Please choose one CFG_HMM_TYPE out of '.cont.', '.ptm.', or '.semi.', "."currently $CFG_HMM_TYPE\n";}# This configuration is fastest and best for most acoustic models in# PocketSphinx and Sphinx-III. See below for Sphinx-II.$CFG_STATESPERHMM=3;$CFG_SKIPSTATE='no';if($CFG_HMM_TYPEeq'.semi.'){$CFG_DIRLABEL='semi';# Four stream features for PocketSphinx$CFG_FEATURE="s2_4x";$CFG_NUM_STREAMS=4;$CFG_INITIAL_NUM_DENSITIES=256;$CFG_FINAL_NUM_DENSITIES=256;die"For semi continuous models, the initial and final models have the same density"if($CFG_INITIAL_NUM_DENSITIES!=$CFG_FINAL_NUM_DENSITIES);}elsif($CFG_HMM_TYPEeq'.ptm.'){$CFG_DIRLABEL='ptm';# Four stream features for PocketSphinx$CFG_FEATURE="s2_4x";$CFG_NUM_STREAMS=4;$CFG_INITIAL_NUM_DENSITIES=64;$CFG_FINAL_NUM_DENSITIES=64;die"For phonetically tied models, the initial and final models have the same density"if($CFG_INITIAL_NUM_DENSITIES!=$CFG_FINAL_NUM_DENSITIES);}elsif($CFG_HMM_TYPEeq'.cont.'){$CFG_DIRLABEL='cont';# Single stream features - Sphinx 3$CFG_FEATURE="1s_c_d_dd";$CFG_NUM_STREAMS=1;$CFG_INITIAL_NUM_DENSITIES=1;$CFG_FINAL_NUM_DENSITIES=8;die"The initial has to be less than the final number of densities"if($CFG_INITIAL_NUM_DENSITIES>$CFG_FINAL_NUM_DENSITIES);}# Number of top gaussians to score a frame. A little bit less accurate computations# make training significantly faster. Uncomment to apply this during the training# For good accuracy make sure you are using the same setting in decoder# In theory this can be different for various training stages. For example 4 for# CI stage and 16 for CD stage# $CFG_CI_NTOP = 4;# $CFG_CD_NTOP = 16;# (yes/no) Train multiple-gaussian context-independent models (useful# for alignment, use 'no' otherwise) in the models created# specifically for forced alignment$CFG_FALIGN_CI_MGAU='no';# (yes/no) Train multiple-gaussian context-independent models (useful# for alignment, use 'no' otherwise)$CFG_CI_MGAU='no';# Number of tied states (senones) to create in decision-tree clustering$CFG_N_TIED_STATES=200;# How many parts to run Forward-Backward estimatinon in$CFG_NPART=1;# (yes/no) Train a single decision tree for all phones (actually one# per state) (useful for grapheme-based models, use 'no' otherwise)$CFG_CROSS_PHONE_TREES='no';# Use force-aligned transcripts (if available) as input to training$CFG_FORCEDALIGN='no';# Use a specific set of models for force alignment. If not defined,# context-independent models for the current experiment will be used.$CFG_FORCE_ALIGN_MDEF="$CFG_BASE_DIR/model_architecture/$CFG_EXPTNAME.falign_ci.mdef";$CFG_FORCE_ALIGN_MODELDIR="$CFG_MODEL_DIR/$CFG_EXPTNAME.falign_ci_$CFG_DIRLABEL";# Use a specific dictionary and filler dictionary for force alignment.# If these are not defined, a dictionary and filler dictionary will be# created from $CFG_DICTIONARY and $CFG_FILLERDICT, with noise words# removed from the filler dictionary and added to the dictionary (this# is because the force alignment is not very good at inserting them)# $CFG_FORCE_ALIGN_DICTIONARY = "$ST::CFG_BASE_DIR/falignout$ST::CFG_EXPTNAME.falign.dict";;# $CFG_FORCE_ALIGN_FILLERDICT = "$ST::CFG_BASE_DIR/falignout/$ST::CFG_EXPTNAME.falign.fdict";;# Use a particular beam width for force alignment. The wider# (i.e. smaller numerically) the beam, the fewer sentences will be# rejected for bad alignment.$CFG_FORCE_ALIGN_BEAM=1e-60;# Calculate an LDA/MLLT transform?$CFG_LDA_MLLT='no';# Dimensionality of LDA/MLLT output$CFG_LDA_DIMENSION=29;# This is actually just a difference in log space (it doesn't make# sense otherwise, because different feature parameters have very# different likelihoods)$CFG_CONVERGENCE_RATIO=0.1;# Queue::POSIX for multiple CPUs on a local machine# Queue::PBS to use a PBS/TORQUE queue$CFG_QUEUE_TYPE="Queue";# Name of queue to use for PBS/TORQUE$CFG_QUEUE_NAME="workq";# (yes/no) Build questions for decision tree clustering automatically$CFG_MAKE_QUESTS="yes";# If CFG_MAKE_QUESTS is yes, questions are written to this file.# If CFG_MAKE_QUESTS is no, questions are read from this file.$CFG_QUESTION_SET="${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.tree_questions";#$CFG_QUESTION_SET = "${CFG_BASE_DIR}/linguistic_questions";$CFG_CP_OPERATION="${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.cpmeanvar";# This variable has to be defined, otherwise utils.pl will not load.$CFG_DONE=1;return1;
You want to create an acoustic model for new language/dialect
OR you need specialized model for small vocabulary application AND you have plenty of data to train on:
1 hour of recording for command and control for single speaker
5 hour of recordings of 200 speakers for command and control for many speakers
10 hours of recordings for single speaker dictation
50 hours of recordings of 200 speakers for many speakers dictation
AND you have knowledge on phonetic structure of the language
AND you have time to train the model and optimize parameters (1 month)
If you would like to refer to this comment somewhere else in this project, copy and paste the following link:
You need more training data. Please read the tutorial
Thanks for the answer, nshmyrev
Maybe you advise me what to do.I need to recognize 10 words. Numbers only. In
Russian. Recording time will be less than one hour.
If you would like to refer to this comment somewhere else in this project, copy and paste the following link:
I need to create a simple model of 10 words. When I run the script
scripts_pl/RunAll.pl
I get this output to the screen:
File voice.kmeans.log contains :
My etc/sphinx_train.cfg contains:
my etc/feat.params contains:
the wav files have parameters:
8kHz,16 Bit, Mono
duration of each record about 0.5 sec (one word)
Where I was wrong? I can provide more information.
Thanks in advance for your answer.
You need more training data. Please read the tutorial
http://cmusphinx.sourceforge.net/wiki/tutorialam
You want to create an acoustic model for new language/dialect
OR you need specialized model for small vocabulary application
AND you have plenty of data to train on:
1 hour of recording for command and control for single speaker
5 hour of recordings of 200 speakers for command and control for many speakers
10 hours of recordings for single speaker dictation
50 hours of recordings of 200 speakers for many speakers dictation
AND you have knowledge on phonetic structure of the language
AND you have time to train the model and optimize parameters (1 month)
Thanks for the answer, nshmyrev
Maybe you advise me what to do.I need to recognize 10 words. Numbers only. In
Russian. Recording time will be less than one hour.
You can use existing model.