Menu

mllt.py failed to create MLLT transform

Help
2011-06-29
2019-01-15
  • vijayabharadwaj gsr

    Dear Sir,

    I am trying to run LDA/MLLT training. I have got the following error. "
    mllt.py failed to create MLLT transform with status 0".

    I am using default dimension values only.

    Calculate an LDA/MLLT transform?

    $CFG_LDA_MLLT = 'yes';

    Dimensionality of LDA/MLLT output

    $CFG_LDA_DIMENSION = 29;

    Phase 4: LDA transform estimation
    Baum welch starting for LDA, iteration: N (1 of 1)
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
    This step had 50 ERROR messages and 0 WARNING messages. Please check the log
    file for details.
    LDA Training completed
    MODULE: 06 Train MLLT transformation
    Phase 1: Cleaning up directories:
    accumulator...logs...qmanager...
    Phase 2: Flat initialize
    Phase 3: Forward-Backward

    LDA training is completed and when it is trying to create MLLR transform there
    is some problem.

    The last few lines of the log file looks like this

    gradient L2: 24480866593407272689493724513120478270342243870937261685361086618
    574251334224349981661966139951557131991509563827334874937182786334614280661635
    66221197312.000000
    likelihood: 1413579874.459867
    gradient L2: 39838480563851398187715471605087740555929064055132708439808230619
    507186700877400335781835995286306817103477191447911311693023427678371824111210
    09698537472.000000
    likelihood: 1401368524.530368
    gradient L2: 88724084115061340753212736576854558112794744842911667295902240000
    466439694025685169246194555555545592989106009033436724536017138586720665988216
    0809312256.000000
    likelihood: 1413441897.808376
    gradient L2: 53990418893570954439897574318123363367378089634178278056402379074
    155809980142527984458284828997305166747664872134965009174575233711184312308581
    68750833664.000000
    likelihood: 1414674290.991693
    gradient L2: 55849494718929241150961626702025885046964166269244166613734401091
    790295429799413469747251880343654833170403636716179171317324526417056008773836
    10808664064.000000
    likelihood: 1407100552.696218
    gradient L2: 17091045104761428218571603520864329472726832524738597365696385410
    635491224830358000905707569207160239503315558857592318683251353501538861641666
    93470863360.000000
    likelihood: 1415586198.331440
    gradient L2: 65592510340811019542071688287598025964172993695250590809367295498
    610010542774396346614268645500250110314122658724163597585278057647727330832615
    42768574464.000000
    likelihood: 1410740002.193484
    gradient L2: 33991264013457004428023385100981599345560032254808764142426704640
    024406133942872223574020930139994822951806263817030306370497525258401860901499
    24583768064.000000
    likelihood: 1416786711.473604
    gradient L2: 81096600279110704083907309728642849568445125067151064033631297755
    6191223940835511581606192711343562506733653534504691603324868702336766Warning:
    divide by zero encountered in log
    5198774539459231744.000000
    likelihood: 1401052508.807922
    gradient L2: 75743759085989013715517585325660999964753833082982449266710901502
    573208959959360265173598262327023248923005976741039136405177307540562080503054
    4993681408.000000
    likelihood: 1413629802.726191
    gradient L2: 41996145025059630582095604700810621661113638694629881478329708011
    832211161849335177958360284199644611111925490623319485675285130596306261159213
    89796982784.000000
    likelihood: 1418446524.020463
    gradient L2: 10124847208876831261015066515538656506358456028220866185663458480
    645205070205593149823802229696156176232360478114339740973590219899724435625940
    874073997312.000000
    likelihood: 1406625897.912199
    gradient L2: 21515710634539703414682707752550963593059497848815969143883780045
    661662666136734037036125770689866588460910673887602698381952121535831277969511
    18440824832.000000
    likelihood: 1418722734.555799
    gradient L2: 11295202417865168849209702294698601805226502454142760005185821370
    776175170874057492976564982508784115752099281648395352734769036603654201288582
    570897833984.000000
    likelihood: 1419714528.443789
    gradient L2: 12381010190558624183499680132211584649367679351363373516786629875
    770340704420055145523991983991247211205389157478914257903405973382298888546596
    354086928384.000000
    Traceback (most recent call last):
    File "/home/lahari/Speech/tellda/python/cmusphinx/mllt.py", line 139, in
    <module>
    mllt = m.train()
    File "/home/lahari/Speech/tellda/python/cmusphinx/mllt.py", line 110, in train
    AA, f, d = fmin_l_bfgs_b(self.objective, A.ravel(), args=A.shape, factr=10)
    File "/usr/lib/python2.7/site-packages/scipy/optimize/lbfgsb.py", line 196, in
    fmin_l_bfgs_b
    f, g = func_and_grad(x)
    File "/usr/lib/python2.7/site-packages/scipy/optimize/lbfgsb.py", line 147, in
    func_and_grad
    f, g = func(x, *args)
    File "/home/lahari/Speech/tellda/python/cmusphinx/mllt.py", line 78, in
    objective
    lg = self.totalcount * inv(A.T)
    File "/usr/lib/python2.7/site-packages/numpy/linalg/linalg.py", line 445, in
    inv
    return wrap(solve(a, identity(a.shape, dtype=a.dtype)))
    File "/usr/lib/python2.7/site-packages/numpy/linalg/linalg.py", line 328, in
    solve
    raise LinAlgError, 'Singular matrix'
    numpy.linalg.linalg.LinAlgError: Singular matrix

    Is there any problem with my model?

     
  • Nickolay V. Shmyrev

    Update to sphinxbase snapshot and sphinxtrain snapshot.

     
  • Rajdeep Singh

    Rajdeep Singh - 2019-01-15

    Hi Nikolay,

    i am facing the same issue. What do you mean by sphinxbase and sphinxtrain snapshot?

     

Log in to post a comment.

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.