XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms.
XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost can be used for Python, Java, Scala, R, C++ and more. It can run on a single machine, Hadoop, Spark, Dask, Flink and most other distributed environments, and is capable of solving problems beyond billions of examples.
Features
- Flexible - with support for regression, classification, ranking and user defined objectives
- Portable - cross-platform including cloud platforms
- Supports multiple programming languages
- Overcomes many data science and machine learning challenges
- Supports distributed training on multiple machines
- Integrates with Flink, Spark and other cloud dataflow systems
- Well-optimized backend system
License
Apache License V2.0Other Useful Business Software
Cut Cloud Costs with Google Compute Engine
Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of XGBoost!