Showing 12 open source projects for "neural net python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Shaderc

    Shaderc

    A collection of tools, libraries, and tests for Vulkan shader

    Shaderc is a collection of tools and libraries for compiling shaders—small programs that run on GPUs—into SPIR-V, the intermediate representation used by the Vulkan graphics API. It provides both a command-line tool (glslc) and a C/C++ library (libshaderc) that wrap the functionality of glslang (the Khronos reference compiler for GLSL) and SPIRV-Tools to deliver a modern, scriptable, and efficient shader compilation workflow. The glslc compiler offers a GCC/Clang-like interface for building...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    RLax

    RLax

    Library of JAX-based building blocks for reinforcement learning agents

    ... as value-based, policy-based, and model-based approaches. RLax is fully JIT-compilable with JAX, enabling high-performance execution across CPU, GPU, and TPU backends. The library implements tools for Bellman equations, return distributions, general value functions, and policy optimization in both continuous and discrete action spaces. It integrates seamlessly with DeepMind’s Haiku (for neural network definition) and Optax (for optimization), making it a key component in modular RL pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CPU Features

    CPU Features

    A cross platform C99 library to get cpu features at runtime

    cpu_features is a cross-platform C library developed by Google that provides a simple and efficient way to detect available CPU features at runtime across a wide range of architectures and operating systems. It enables applications to determine which instruction sets (such as SSE, AVX, or NEON) are supported on the host machine, allowing developers to optimize performance dynamically. The library supports numerous architectures—including x86, ARM, AArch64, MIPS, POWER, RISCV, LoongArch, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    SVoice (Speech Voice Separation)

    SVoice (Speech Voice Separation)

    We provide a PyTorch implementation of the paper Voice Separation

    SVoice is a PyTorch-based implementation of Facebook Research’s study on speaker voice separation as described in the paper “Voice Separation with an Unknown Number of Multiple Speakers.” This project presents a deep learning framework capable of separating mixed audio sequences where several people speak simultaneously, without prior knowledge of how many speakers are present. The model employs gated neural networks with recurrent processing blocks that disentangle voices over multiple...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    CNN for Image Retrieval
    cnn-for-image-retrieval is a research-oriented project that demonstrates the use of convolutional neural networks (CNNs) for image retrieval tasks. The repository provides implementations of CNN-based methods to extract feature representations from images and use them for similarity-based retrieval. It focuses on applying deep learning techniques to improve upon traditional handcrafted descriptors by learning features directly from data. The code includes training and evaluation scripts...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    I3D models trained on Kinetics

    I3D models trained on Kinetics

    Convolutional neural network model for video classification

    Kinetics-I3D, developed by Google DeepMind, provides trained models and implementation code for the Inflated 3D ConvNet (I3D) architecture introduced in the paper “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset” (CVPR 2017). The I3D model extends the 2D convolutional structure of Inception-v1 into 3D, allowing it to capture spatial and temporal information from videos for action recognition. This repository includes pretrained I3D models on the Kinetics dataset, with...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind. Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    PrettyTensor

    PrettyTensor

    Pretty Tensor: Fluent Networks in TensorFlow

    Pretty Tensor is a high-level API built on top of TensorFlow that simplifies the process of creating and managing deep learning models. It wraps TensorFlow tensors in a chainable object syntax, allowing developers to build multi-layer neural networks with concise and readable code. Pretty Tensor preserves full compatibility with TensorFlow’s core functionality while providing syntactic sugar for defining complex architectures such as convolutional and recurrent networks. The library’s design...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    dotCODES_Source_Control_for_VS

    dotCODES_Source_Control_for_VS

    The dotCODES Source Control Maintenance Mainframe (SCM2)

    The dotCODES Source Control Maintenance Mainframe for Visual Studio is an administrator console application for developing dotCODES components. Built upon a Python foundation, the program is used to create data center routines (Unix packages) and maintain enterprise cloud services (CGI scripts/Apache) by means of building dotCODES runtimes and deploying them to and from the client server.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Pools of Virtual Boxes (POVB) aims to make it easy to deploy Linux Condor pools on Windows based machines using Virtual Box virtual machines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next