Showing 2 open source projects for "image search algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    CNN for Image Retrieval
    cnn-for-image-retrieval is a research-oriented project that demonstrates the use of convolutional neural networks (CNNs) for image retrieval tasks. The repository provides implementations of CNN-based methods to extract feature representations from images and use them for similarity-based retrieval. It focuses on applying deep learning techniques to improve upon traditional handcrafted descriptors by learning features directly from data. The code includes training and evaluation scripts that...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a specific input video, ensuring stable and realistic depth maps even in less-constrained regions. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next