Showing 52 open source projects for "tensorflow"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SageMaker TensorFlow Serving Container

    SageMaker TensorFlow Serving Container

    A TensorFlow Serving solution for use in SageMaker

    SageMaker TensorFlow Serving Container is an a open source project that builds docker images for running TensorFlow Serving on Amazon SageMaker. Some of the build and tests scripts interact with resources in your AWS account. Be sure to set your default AWS credentials and region using aws configure before using these scripts. Amazon SageMaker uses Docker containers to run all training jobs and inference endpoints. The Docker images are built from the Dockerfiles in docker/. The Dockerfiles...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Spleeter

    Spleeter

    Deezer source separation library including pretrained models

    Spleeter is the Deezer source separation library with pretrained models written in Python and using Tensorflow. It makes it easy to train music source separation models (assuming you have a dataset of isolated sources), and provides already trained state of the art models for performing various flavours of separation. 2 stems and 4 stems models have state of the art performances on the musdb dataset. Spleeter is also very fast as it can perform separation of audio files to 4 stems 100x faster...
    Downloads: 88 This Week
    Last Update:
    See Project
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 5
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    ... and comparison. The library provides automatic path finding and cost estimation, exposing when contractions will explode in memory and suggesting better orders. Because it supports backends such as NumPy, TensorFlow, PyTorch, and JAX, the same model can run on CPUs, GPUs, or TPUs with minimal code changes. Tutorials and visualization helpers make it easier to understand how network topology affects expressive power and computational cost.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TRFL

    TRFL

    TensorFlow Reinforcement Learning

    TRFL, developed by Google DeepMind, is a TensorFlow-based library that provides a collection of essential building blocks for reinforcement learning (RL) algorithms. Pronounced “truffle,” it simplifies the implementation of RL agents by offering reusable components such as loss functions, value estimation tools, and temporal difference (TD) learning operators. The library is designed to integrate seamlessly with TensorFlow, allowing users to define differentiable RL objectives and train models...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    Differentiable Neural Computer

    Differentiable Neural Computer

    A TensorFlow implementation of the Differentiable Neural Computer

    The Differentiable Neural Computer (DNC), developed by Google DeepMind, is a neural network architecture augmented with dynamic external memory, enabling it to learn algorithms and solve complex reasoning tasks. Published in Nature in 2016 under the paper “Hybrid computing using a neural network with dynamic external memory,” the DNC combines the pattern recognition power of neural networks with a memory module that can be written to and read from in a differentiable way. This allows the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Enterprise and Small Business CRM Solution | Clear C2 C2CRM Icon
    Enterprise and Small Business CRM Solution | Clear C2 C2CRM

    Voted Best CRM System with Top Ranked Customer Support. CRM Management includes Sales, Marketing, Relationship Management, and Help Desk.

    C2CRM consists of four modules that integrate to provide a comprehensive CRM solution: Relationship Management, Sales Automation, Marketing Automation, and Customer Service. Only buy what each user needs.
    Learn More
  • 10
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the theory...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    SageMaker MXNet Training Toolkit

    SageMaker MXNet Training Toolkit

    Toolkit for running MXNet training scripts on SageMaker

    SageMaker MXNet Training Toolkit is an open-source library for using MXNet to train models on Amazon SageMaker. For inference, see SageMaker MXNet Inference Toolkit. For the Dockerfiles used for building SageMaker MXNet Containers, see AWS Deep Learning Containers. For information on running MXNet jobs on Amazon SageMaker, please refer to the SageMaker Python SDK documentation. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees. AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    ..., competitive, and mixed settings. The code is built on top of TensorFlow and integrates with the Multiagent Particle Environments (MPE) for benchmarking. Researchers can use it to reproduce the experiments presented in the paper, which demonstrate how agents learn behaviors such as coordination, competition, and communication. Although archived, MADDPG remains a widely cited baseline in multi-agent reinforcement learning research and has inspired further algorithmic developments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Baselines

    Baselines

    High-quality implementations of reinforcement learning algorithms

    Unlike the other two, openai/baselines is not currently a maintained or prominent repo in the OpenAI organization (and I found no strong reference in OpenAI’s main GitHub). Historically, “baselines” repositories are often used for baseline implementations of reinforcement learning algorithms or reference models (e.g. in the RL domain). If there was an OpenAI “baselines” repo, it might have contained reference implementations for reinforcement learning or model policy baselines to compare new...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Graph Nets library

    Graph Nets library

    Build Graph Nets in Tensorflow

    Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. This library implements the foundational...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    I3D models trained on Kinetics

    I3D models trained on Kinetics

    Convolutional neural network model for video classification

    ... RGB and optical flow input streams. The models have achieved state-of-the-art results on benchmark datasets such as UCF101 and HMDB51, and also won first place in the CVPR 2017 Charades Challenge. The project provides TensorFlow and Sonnet-based implementations, pretrained checkpoints, and example scripts for evaluating or fine-tuning models. It also offers sample data, including preprocessed video frames and optical flow arrays, to demonstrate how to run inference and visualize outputs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    TF Quant Finance

    TF Quant Finance

    High-performance TensorFlow library for quantitative finance

    TF Quant Finance is a high-performance library of quantitative finance components built on TensorFlow, aimed at research and production workloads. It implements pricing engines, risk measures, stochastic models, optimizers, and random number generators that are differentiable and vectorized for accelerators. Users can value options and fixed-income instruments, simulate paths, fit curves, and calibrate models while leveraging TensorFlow’s jit compilation and automatic differentiation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    captcha_break

    captcha_break

    Identification codes

    ... codes and voice verification codes. We use its function of generating image verification codes. First, we set our verification code format to numbers and capital letters, and generate a string of verification codes. It is well known that tensorflow occupies all video memory by default, which is not conducive to us conducting multiple experiments at the same time, so we can use the following code when tensorflow uses the video memory it needs instead of directly occupying all video memory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TensorFlow-ZH

    TensorFlow-ZH

    Chinese version of the official document of TensorFlow

    The tensorflow-zh repository is a Chinese translation of the official TensorFlow documentation, organized to make the core guides, tutorials, and reference material accessible to Chinese speakers. It was initiated shortly after TensorFlow’s open-sourcing, with translation and proofreading contributions from a community of volunteers who aimed to bridge the language barrier for learners in China and other Mandarin communities. The repo mirrors the structure of the original English docs: chapters...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Gin Config

    Gin Config

    Gin provides a lightweight configuration framework for Python

    ... values, scoped configurations, and modular references to functions, classes, or instances, resulting in highly composable and dynamic experiment setups. Gin is particularly popular in TensorFlow and PyTorch projects, where researchers and developers need to tune numerous interdependent parameters across models, datasets, optimizers, and training pipelines.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    TensorFlow World

    TensorFlow World

    Simple and ready-to-use tutorials for TensorFlow

    This repository aims to provide simple and ready-to-use tutorials for TensorFlow. The explanations are present in the wiki associated with this repository. There are different motivations for this open source project. TensorFlow (as we write this document) is one of / the best deep learning frameworks available. The question that should be asked is why has this repository been created when there are so many other tutorials about TensorFlow available on the web? Deep Learning is in very high...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative code...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    seq2seq

    seq2seq

    A general-purpose encoder-decoder framework for Tensorflow

    seq2seq is an early, influential TensorFlow reference implementation for sequence-to-sequence learning with attention, covering tasks like neural machine translation, summarization, and dialogue. It packaged encoders, decoders, attention mechanisms, and beam search into a modular training and inference framework. The codebase showcased best practices for batching, bucketing by sequence length, and handling variable-length sequences efficiently on GPUs. Researchers used it as a baseline...
    Downloads: 0 This Week
    Last Update:
    See Project