With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Context for your AI agents
Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.
Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
Simulation of spiking neural networks (SNNs) using PyTorch
A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
Implement AlphaZero/AlphaGo Zero methods on Chinese chess
ChineseChess-AlphaZero is a project that implements the AlphaZero algorithm for the game of Chinese Chess (Xiangqi). It adapts DeepMind’s AlphaZero method—combining neural networks and Monte Carlo Tree Search (MCTS)—to learn and play Chinese Chess without prior human data. The system includes self-play, training, and evaluation pipelines tailored to Xiangqi's unique game mechanics.
This project provides a framework for testing and comparing different machine learning algorithms (particularly reinforcement learning methods) in different scenarios. Its intended area of application is in research and education.
A Python class library of tools for learning agents, including reinforcement learning algorithms, function approximators, and vector quantizations algorithms. (Pronounced "plastic".)
Run applications fast and securely in a fully managed environment
Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.
Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
General purpose agents using reinforcement learning. Combines radial basis functions, temporal difference learning, planning, uncertainty estimations, and curiosity. Intended to be an out-of-the-box solution for roboticists and game developers.