• Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    RL Baselines3 Zoo

    RL Baselines3 Zoo

    Training framework for Stable Baselines3 reinforcement learning agents

    rl-baselines3-zoo is a collection of pre-trained models, benchmarks, and hyperparameter tuning tools built on top of Stable Baselines3, a reinforcement learning library. It provides an easy way to test, evaluate, and train RL agents across a wide variety of environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    ...It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    AirSim is an open-source, cross platform simulator for drones, cars and more vehicles, built on Unreal Engine with an experimental Unity release in the works. It supports software-in-the-loop simulation with popular flight controllers such as PX4 & ArduPilot and hardware-in-loop with PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. AirSim's development is oriented towards the goal of creating a...
    Downloads: 37 This Week
    Last Update:
    See Project
  • 4
    PySC2

    PySC2

    StarCraft II learning environment

    PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions. The easiest way to get PySC2 is to use pip. That will install the pysc2...
    Downloads: 1 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 5
    DeepMind Lab

    DeepMind Lab

    A customizable 3D platform for agent-based AI research

    ...If you use DeepMind Lab in your research and would like to cite the DeepMind Lab environment, we suggest you cite the DeepMind Lab paper. To enable compiler optimizations, pass the flag --compilation_mode=opt, or -c opt for short, to each bazel build, bazel test and bazel run command. The flag is omitted from the examples here for brevity, but it should be used for real training and evaluation where performance matters. DeepMind Lab ships with an example random agent in python/random_agent.py which can be used as a starting point for implementing a learning agent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    SMAC

    SMAC

    SMAC: The StarCraft Multi-Agent Challenge

    SMAC (StarCraft II Multi-Agent Challenge) is a benchmark environment for cooperative multi-agent reinforcement learning (MARL), based on real-time strategy (RTS) game scenarios in StarCraft II. It allows researchers to test algorithms where multiple units (agents) must collaborate to win battles against built-in game AI opponents. SMAC provides a controlled testbed for studying decentralized execution and centralized training paradigms in MARL.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    CLSquare

    Closed Loop Simulation System

    Closed Loop Simulation System (CLSquare) is an integrated architecture to train, test and compare reinforcement learning controllers on different plants. CLSquare provides simulated plants as well as interfaces to real plants.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next