verl
Volcano Engine Reinforcement Learning for LLMs
...The library focuses on scalability and efficiency, offering distributed training loops, mixed precision, and replay/buffering utilities that keep accelerators busy. It ships with reference implementations of popular alignment algorithms and clear examples that make it straightforward to reproduce baselines before customizing. Data pipelines treat human feedback, simulated environments, and synthetic preferences as interchangeable sources, which helps with rapid experimentation. VERL is meant for both research and production hardening: logging, checkpointing, and evaluation suites are built in so you can track learning dynamics and regressions over time.