• Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    EnvPool

    EnvPool

    C++-based high-performance parallel environment execution engine

    EnvPool is a fast, asynchronous, and parallel RL environment library designed for scaling reinforcement learning experiments. Developed by SAIL at Singapore, it leverages C++ backend and Python frontend for extremely high-speed environment interaction, supporting thousands of environments running in parallel on a single machine. It's compatible with Gymnasium API and RLlib, making it suitable for scalable training pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Pwnagotchi

    Pwnagotchi

    Deep Reinforcement learning instrumenting bettercap for WiFi pwning

    ...This material is collected on disk as PCAP files containing any form of handshake supported by hashcat, including full and half WPA handshakes as well as PMKIDs. Instead of merely playing Super Mario or Atari games like most reinforcement learning based “AI” (yawn), Pwnagotchi tunes its own parameters over time to get better at pwning WiFi things in the real world environments you expose it to. To give hackers an excuse to learn about reinforcement learning and WiFi networking, and have a reason to get out for more walks.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    RL Baselines Zoo

    RL Baselines Zoo

    A collection of 100+ pre-trained RL agents using Stable Baselines

    RL Baselines Zoo is a comprehensive training framework and collection of pre-trained RL agents using Stable-Baselines3. It offers tools for training, tuning, and evaluating RL algorithms across many standard environments, including MuJoCo, Atari, and robotics simulations. Designed for reproducible RL research and benchmarking, it includes scripts, hyperparameter presets, and best practices for training robust agents.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Werx is the best construction management app for contractors. Icon
    Werx is the best construction management app for contractors.

    Experience seamless project management with WERX, the ultimate solution for long-term and complex construction projects.

    Werx is the most affordable construction management software, starting at just $49/month. Designed for small to midsized contractors, Werx streamlines your business with flexible estimates, AIA billing, QuickBooks integration, and real-time labor tracking. Get paid faster with online payments via Stripe. Try it free for 30 days and see why Werx is the best value in the industry!
    Learn More
  • 5
    Dopamine

    Dopamine

    Framework for prototyping of reinforcement learning algorithms

    ...It aims to fill the need for a small, easily grokked codebase in which users can freely experiment with wild ideas (speculative research). This first version focuses on supporting the state-of-the-art, single-GPU Rainbow agent (Hessel et al., 2018) applied to Atari 2600 game-playing (Bellemare et al., 2013). Specifically, our Rainbow agent implements the three components identified as most important by Hessel et al., n-step Bellman updates, prioritized experience replay, and distributional reinforcement learning. For completeness, we also provide an implementation of DQN (Mnih et al., 2015). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next