Showing 2 open source projects for "duplicate code detect"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    ...The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next