Showing 69 open source projects for "python q learning"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AI4U

    AI4U

    Multi-engine plugin to specify agents with reinforcement learning

    ...Train using multiple concurrent Unity/Godot environment instances. Unity/Godot environment partial control from Python. Wrap Unity/Godot learning environments as a gym.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    EasyRL

    EasyRL

    Reinforcement learning (RL) tutorial series

    easy-rl is a beginner-friendly reinforcement learning (RL) tutorial series and framework developed by Datawhale China. It provides educational resources and implementations of various RL algorithms to help new researchers and practitioners learn RL concepts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Fully managed relational database service for MySQL, PostgreSQL, and SQL Server Icon
    Fully managed relational database service for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Cloud SQL manages your databases so you don't have to, so your business can run without disruption. It automates all your backups, replication, patches, encryption, and storage capacity increases to give your applications the reliability, scalability, and security they need.
    Try for free
  • 5
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    ElegantRL

    ElegantRL

    Massively Parallel Deep Reinforcement Learning

    ElegantRL is an efficient and flexible deep reinforcement learning framework designed for researchers and practitioners. It focuses on simplicity, high performance, and supporting advanced RL algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 10
    Bullet Physics SDK

    Bullet Physics SDK

    Real-time collision detection and multi-physics simulation for VR

    ...In addition, the simulator can be entirely run on CUDA for fast rollouts, in combination with Augmented Random Search. This allows for 1 million simulation steps per second. It is highly recommended to use PyBullet Python bindings for improved support for robotics, reinforcement learning and VR. Use pip install pybullet and checkout the PyBullet Quickstart Guide.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 11
    PySC2

    PySC2

    StarCraft II learning environment

    PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    Trax

    Trax

    Deep learning with clear code and speed

    ...Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). It is also actively used for research and includes new models like the Reformer and new RL algorithms like AWR. Trax has bindings to a large number of deep learning datasets, including Tensor2Tensor and TensorFlow datasets. You can use Trax either as a library from your own python scripts and notebooks or as a binary from the shell, which can be more convenient for training large models. It runs without any changes on CPUs, GPUs and TPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    This repo contains the code for the O'Reilly Media, Inc. book "Hands-on Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data" by Ankur A. Patel. Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied; this is where unsupervised learning comes in. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepMind Lab

    DeepMind Lab

    A customizable 3D platform for agent-based AI research

    ...The flag is omitted from the examples here for brevity, but it should be used for real training and evaluation where performance matters. DeepMind Lab ships with an example random agent in python/random_agent.py which can be used as a starting point for implementing a learning agent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Stable Baselines

    Stable Baselines

    A fork of OpenAI Baselines, implementations of reinforcement learning

    Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a detailed presentation of Stable Baselines in the Medium article. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    RL Baselines Zoo

    RL Baselines Zoo

    A collection of 100+ pre-trained RL agents using Stable Baselines

    RL Baselines Zoo is a comprehensive training framework and collection of pre-trained RL agents using Stable-Baselines3. It offers tools for training, tuning, and evaluating RL algorithms across many standard environments, including MuJoCo, Atari, and robotics simulations. Designed for reproducible RL research and benchmarking, it includes scripts, hyperparameter presets, and best practices for training robust agents.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that makes it easier to learn about deep reinforcement learning (deep RL). For the unfamiliar, reinforcement learning (RL) is a machine learning approach for teaching agents how to solve tasks by trial and error. Deep RL refers to the combination of RL with deep learning. At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    RecNN

    RecNN

    Reinforced Recommendation toolkit built around pytorch 1.7

    This is my school project. It focuses on Reinforcement Learning for personalized news recommendation. The main distinction is that it tries to solve online off-policy learning with dynamically generated item embeddings. I want to create a library with SOTA algorithms for reinforcement learning recommendation, providing the level of abstraction you like.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 0 This Week
    Last Update:
    See Project