Showing 2 open source projects for "ml-so1v"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Award-Winning Medical Office Software Designed for Your Specialty Icon
    Award-Winning Medical Office Software Designed for Your Specialty

    Succeed and scale your practice with cloud-based, data-backed, AI-powered healthcare software.

    RXNT is an ambulatory healthcare technology pioneer that empowers medical practices and healthcare organizations to succeed and scale through innovative, data-backed, AI-powered software.
    Learn More
  • 1
    sparklyr

    sparklyr

    R interface for Apache Spark

    sparklyr is an R package that provides seamless interfacing with Apache Spark clusters—either local or remote—while letting users write code in familiar R paradigms. It supplies a dplyr-compatible backend, Spark machine learning pipelines, SQL integration, and I/O utilities to manipulate and analyze large datasets distributed across cluster environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    benchm-ml

    benchm-ml

    A benchmark of commonly used open source implementations

    This repository is designed to provide a minimal benchmark framework comparing commonly used machine learning libraries in terms of scalability, speed, and classification accuracy. The focus is on binary classification tasks without missing data, where inputs can be numeric or categorical (after one-hot encoding). It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next