Showing 562 open source projects for "ml-so1v"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 1
    Rubix ML

    Rubix ML

    A high-level machine learning and deep learning library for PHP

    Rubix ML is a free open-source machine learning (ML) library that allows you to build programs that learn from your data using the PHP language. We provide tools for the entire machine learning life cycle from ETL to training, cross-validation, and production with over 40 supervised and unsupervised learning algorithms. In addition, we provide tutorials and other educational content to help you get started using ML in your projects.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    applied-ml

    applied-ml

    Papers & tech blogs by companies sharing their work on data science

    The applied-ml repository is a rich, curated collection of papers, technical articles, and case-study blog posts about how machine learning (ML) and data-driven systems are applied in real production environments by major companies. Instead of focusing solely on theoretical ML research, this repo highlights industry-scale challenges: data collection, quality, infrastructure, feature stores, model serving, monitoring, scalability, and how ML is embedded in product workflows. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ML for Beginners

    ML for Beginners

    12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all

    ...It emphasizes ethical considerations and model evaluation—accuracy is not the only metric—so students learn to validate and communicate results responsibly. By the end, participants can build end-to-end ML experiments, interpret outputs, and iterate with confidence rather than just copying code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 5
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    River ML

    River ML

    Online machine learning in Python

    River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    ml.js

    ml.js

    Machine learning tools in JavaScript

    ...If you are working with Node.js, you might prefer to add to your dependencies only the libraries that you need, as they are usually published to npm more often. We prefix all our npm package names with ml- (eg. ml-matrix) so they are easy to find.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Unity ML-Agents Toolkit

    Unity ML-Agents Toolkit

    Unity machine learning agents toolkit

    ...Using Unity and the ML-Agents toolkit, you can create AI environments that are physically, visually, and cognitively rich.
    Downloads: 9 This Week
    Last Update:
    See Project
  • The AI workplace management platform Icon
    The AI workplace management platform

    Plan smart spaces, connect teams, manage assets, and get insights with the leading AI-powered operating system for the built world.

    By combining AI workflows, predictive intelligence, and automated insights, OfficeSpace gives leaders a complete view of how their spaces are used and how people work. Facilities, IT, HR, and Real Estate teams use OfficeSpace to optimize space utilization, enhance employee experience, and reduce portfolio costs with precision.
    Learn More
  • 10
    ML+

    ML+

    Machine Learning

    Fast Machine Learning
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Core ML Stable Diffusion

    Core ML Stable Diffusion

    Stable Diffusion with Core ML on Apple Silicon

    Run Stable Diffusion on Apple Silicon with Core ML. python_coreml_stable_diffusion, a Python package for converting PyTorch models to Core ML format and performing image generation with Hugging Face diffusers in Python. StableDiffusion, a Swift package that developers can add to their Xcode projects as a dependency to deploy image generation capabilities in their apps. The Swift package relies on the Core ML model files generated by python_coreml_stable_diffusion. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any cluster. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Evidently

    Evidently

    Evaluate and monitor ML models from validation to production

    Evidently is an open-source Python library for data scientists and ML engineers. It helps evaluate, test, and monitor ML models from validation to production. It works with tabular, text data and embeddings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    OptScale

    OptScale

    FinOps and MLOps platform to run ML/AI and regular cloud workloads

    Run ML/AI or any type of workload with optimal performance and infrastructure cost. OptScale allows ML teams to multiply the number of ML/AI experiments running in parallel while efficiently managing and minimizing costs associated with cloud and infrastructure resources. OptScale MLOps capabilities include ML model leaderboards, performance bottleneck identification and optimization, bulk run of ML/AI experiments, experiment tracking, and more. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Flyte
    Build production-grade data and ML workflows, hassle-free The infinitely scalable and flexible workflow orchestration platform that seamlessly unifies data, ML and analytics stacks. Don’t let friction between development and production slow down the deployment of new data/ML workflows and cause an increase in production bugs. Flyte enables rapid experimentation with production-grade software.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Giskard

    Giskard

    Collaborative & Open-Source Quality Assurance for all AI models

    The testing framework dedicated to ML models, from tabular to LLMs. Giskard is an open-source testing framework dedicated to ML models, from tabular models to LLMs. Testing Machine Learning applications can be tedious. Since ML models depend on data, testing scenarios depend on the domain specificities and are often infinite. At Giskard, we believe that Machine Learning needs its own testing framework.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    ...This metadata backend enables advanced functionality like experiment tracking or warm starting/resuming ML models from previous runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    ...MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    Kubeflow Training Operator

    Kubeflow Training Operator

    Distributed ML Training and Fine-Tuning on Kubernetes

    Kubeflow Training Operator is a Kubernetes-native project for fine-tuning and scalable distributed training of machine learning (ML) models created with various ML frameworks such as PyTorch, TensorFlow, XGBoost, MPI, Paddle, and others.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    TensorFlow.js

    TensorFlow.js

    TensorFlow.js is a library for machine learning in JavaScript

    TensorFlow.js is a library for machine learning in JavaScript. Develop ML models in JavaScript, and use ML directly in the browser or in Node.js. Use off-the-shelf JavaScript models or convert Python TensorFlow models to run in the browser or under Node.js. Retrain pre-existing ML models using your own data. Build and train models directly in JavaScript using flexible and intuitive APIs. Tensors are the core datastructure of TensorFlow.js They are a generalization of vectors and matrices to potentially higher dimensions. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Mochi Diffusion

    Mochi Diffusion

    Run Stable Diffusion on Mac natively

    ...Use custom Stable Diffusion Core ML models. No worries about pickled models. macOS native app using SwiftUI.
    Downloads: 51 This Week
    Last Update:
    See Project
  • 23
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    ...Run your ML workflows anywhere: local, on-premises, or in the cloud environment of your choice. Keep yourself open to new tools - ZenML is easily extensible and forever open-source!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Lux

    Lux

    The Lux Programming Language

    ...Read carefully before using this project, as the license disallows commercial use, and has other conditions which may be undesirable for some. The language is mostly inspired by the following 3 languages. Clojure (syntax, overall look & feel), Haskell (functional programming), and Standard ML (module system). They are implemented as plain-old data-structures whose expressions get eval'ed by the compiler and integrated into the type-checker. The main difference between Lux & Standard ML is that Standard ML separates interfaces/signatures and implementations/structures.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next