Open Source Linux Quantum Computing Software

Quantum Computing Software for Linux

View 6 business solutions

Browse free open source Quantum Computing software and projects for Linux below. Use the toggles on the left to filter open source Quantum Computing software by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered appsโ€”without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do bestโ€”building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Qiskit

    Qiskit

    Qiskit is an open-source SDK for working with quantum computers

    Qiskit [kiss-kit] is an open-source SDK for working with quantum computers at the level of pulses, circuits, and application modules. When you are looking to start Qiskit, you have two options. You can start Qiskit locally, which is much more secure and private, or you get started with Jupyter Notebooks hosted in IBM Quantum Lab. Qiskit includes a comprehensive set of quantum gates and a variety of pre-built circuits so users at all levels can use Qiskit for research and application development. The transpiler translates Qiskit code into an optimized circuit using a backendโ€™s native gate set, allowing users to program for any quantum processor or processor architecture with minimal inputs. Users can run and schedule jobs on real quantum processors, and employ Qiskit Runtime to orchestrate quantum programs on cloud-based CPUs, QPUs, and GPUs.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    QuTiP

    QuTiP

    QuTiP: Quantum Toolbox in Python

    QuTiP is open-source software for simulating the dynamics of open quantum systems. The QuTiP library depends on the excellent Numpy, Scipy, and Cython numerical packages. In addition, graphical output is provided by Matplotlib. QuTiP aims to provide user-friendly and efficient numerical simulations of a wide variety of Hamiltonians, including those with arbitrary time-dependence, commonly found in a wide range of physics applications such as quantum optics, trapped ions, superconducting circuits, and quantum nanomechanical resonators. QuTiP is freely available for use and/or modification on all major platforms such as Linux, Mac OSX, and Windows*. Being free of any licensing fees, QuTiP is ideal for exploring quantum mechanics and dynamics in the classroom.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 3
    Mitiq

    Mitiq

    Mitiq is an open source toolkit for implementing error mitigation

    Mitiq is a Python toolkit for implementing error mitigation techniques on quantum computers. Current quantum computers are noisy due to interactions with the environment, imperfect gate applications, state preparation and measurement errors, etc. Error mitigation seeks to reduce these effects at the software level by compiling quantum programs in clever ways.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    ProjectQ

    ProjectQ

    An open source software framework for quantum computing

    ProjectQ is an open-source effort for quantum computing. It features a compilation framework capable of targeting various types of hardware, a high-performance quantum computer simulator with emulation capabilities, and various compiler plug-ins.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinetโ€™s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinetโ€™s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Superstaq

    Superstaq

    Quantum software platform that is optimized across the quantum stack

    This repository is the home of the Superstaq development team's open-source work. Our quantum software platform is optimized across the quantum stack and enables users to write quantum programs in Cirq or Qiskit and target a variety of quantum computers and simulators.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    BQSKit

    BQSKit

    Berkeley Quantum Synthesis Toolkit

    The Berkeley Quantum Synthesis Toolkit (BQSKit) [bis โ€ข kit] is a powerful and portable quantum compiler framework. It can be used with ease to compile quantum programs to efficient physical circuits for any QPU. A standard workflow utilizing BQSKit consists of loading a program into the framework, modeling the target QPU, compiling the program, and exporting the resulting circuit.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Cirq

    Cirq

    A python framework for creating, editing, and invoking NISQ

    Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Yao

    Yao

    Extensible, Efficient Quantum Algorithm Design for Humans

    An intermediate representation to construct and manipulate your quantum circuit and let you make own abstractions on the quantum circuit in native Julia. Yao supports both forward-mode (faithful gradient) and reverse-mode automatic differentiation with its builtin engine optimized specifically for quantum circuits. Top performance for quantum circuit simulations. Its CUDA backend and batched quantum register support can make typical quantum circuits even faster. Yao is designed to be extensible. Its hierarchical architecture allows you to extend the framework to support and share your new algorithm and hardware.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Azure Quantum Development Kit

    Azure Quantum Development Kit

    Azure Quantum Development Kit

    Azure Quantum Development Kit, including the Q# programming language, resource estimator, and Quantum Katas. The playground is a small website that loads the Q# editor, compiler, samples, katas, and documentation for the standard library. It's a way to manually validate any changes you make to these components. The easiest way to develop in this repo is to use VS Code. When you open the project root, by default VS Code will recommend you install the extensions listed in .vscode/extensions.json. These extensions provide language services for editing, as well as linters and formatters to ensure the code meets the requirements (which are checked by the build.py script and CI).
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinetโ€™s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinetโ€™s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Perceval

    Perceval

    An open source framework for programming photonic quantum computers

    An open-source framework for programming photonic quantum computers. Through a simple object-oriented Python API, Perceval provides tools for composing circuits from linear optical components, defining single-photon sources, manipulating Fock states, running simulations, reproducing published experimental papers and experimenting with a new generation of quantum algorithms. It aims to be a companion tool for developing photonic circuits โ€“ for simulating and optimizing their design, modeling both the ideal and realistic behaviors, and proposing a normalized interface to control them through the concept of backends.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Quantum++

    Quantum++

    Modern C++ quantum computing library

    Quantum++ is a modern C++ general-purpose quantum computing library, composed solely of template header files. Quantum++ is written in standard C++17 and has very low external dependencies, using only the Eigen 3 linear algebra header-only template library and, if available, the OpenMP multiprocessing library. Quantum++ is not restricted to qubit systems or specific quantum information processing tasks, being capable of simulating arbitrary quantum processes. The main design factors taken in consideration were ease of use, high portability, and high performance. The library's simulation capabilities are only restricted by the amount of available physical memory. On a typical machine (Intel i5 8Gb RAM) Quantum++ can successfully simulate the evolution of 25 qubits in a pure state or of 12 qubits in a mixed state reasonably fast.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    qaqarot

    qaqarot

    Quantum Computer Library for Everyone

    The Blueqat project has been renamed the Qaqarot Project because of the branding strategy of blueqat inc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    OpenFermion

    OpenFermion

    The electronic structure package for quantum computers

    OpenFermion is an open source library for compiling and analyzing quantum algorithms to simulate fermionic systems, including quantum chemistry. Among other functionalities, this version features data structures and tools for obtaining and manipulating representations of fermionic and qubit Hamiltonians. For more information, see our release paper. Currently, OpenFermion is tested on Mac, Windows, and Linux. We recommend using Mac or Linux because the electronic structure plugins are only compatible on these platforms. However, for those who would like to use Windows, or for anyone having other difficulties with installing OpenFermion or its plugins, we have provided a Docker image and usage instructions in the docker folder. The Docker image provides a virtual environment with OpenFermion and select plugins pre-installed. The Docker installation should run on any operating system.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    OpenQASM

    OpenQASM

    Quantum assembly language for extended quantum circuits

    OpenQASM is an imperative programming language designed for near-term quantum computing algorithms and applications. Quantum programs are described using the measurement-based quantum circuit model with support for classical feed-forward flow control based on measurement outcomes. OpenQASM presents a parameterized set of physical logic gates and concurrent real-time classical computations. Its main goal is to serve as an intermediate representation for higher-level compilers to communicate with quantum hardware. Allowances have been made for human usability. In particular, the language admits different representations of the same program as it is transformed from a high-level description to a pulse representation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Paddle Quantum

    Paddle Quantum

    Paddle Quantum

    Paddle Quantum (้‡ๆกจ) is the world's first cloud-integrated quantum machine learning platform based on Baidu PaddlePaddle. It supports the building and training of quantum neural networks, making PaddlePaddle the first deep-learning framework in China. Paddle Quantum is feature-rich and easy to use. It provides comprehensive API documentation and tutorials help users get started right away. Paddle Quantum aims at establishing a bridge between artificial intelligence (AI) and quantum computing (QC). It has been utilized for developing several quantum machine learning applications. With the PaddlePaddle deep learning platform empowering QC, Paddle Quantum provides strong support for the scientific research community and developers in the field to easily develop QML applications. Moreover, it provides a learning platform for quantum computing enthusiasts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Qbsolv

    Qbsolv

    A decomposing solver

    Qbsolv,a decomposing solver, finds a minimum value of a large quadratic unconstrained binary optimization (QUBO) problem by splitting it into pieces solved either via a D-Wave system or a classical tabu solver. (Note that qbsolv by default uses its internal classical solver. Access to a D-Wave system must be arranged separately.)
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Qulacs

    Qulacs

    Variational Quantum Circuit Simulator for Quantum Computation Research

    Variational Quantum Circuit Simulator for Quantum Computation Research. Qulacs is a Python/C++ library for fast simulation of large, noisy, or parametric quantum circuits. Qulacs is developed at QunaSys, Osaka University, NTT, and Fujitsu.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    QNC is a Environment for developing quantum computer simulations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    OPEN GENERAL SCIENTIFIC INTERFACES
    OPEN GENERAL SCIENTIFIC INTERFACES homepage : http://www.opengsi.org
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Quantum Wells, Wires and Dots

    Quantum Wells, Wires and Dots

    A set of tools for simulating semiconductor nanostructures.

    This software accompanies the textbook "Quantum Wells, Wires and Dots" (4th Edition), Paul Harrison and Alex Valavanis, Wiley, Chichester (2015). It is adapted (by the same authors) from code that was originally supplied on a CD with the first edition of the book [1] and is now made available under the GPL3 license. In brief, we encourage everyone to use the software in your studies and research, to study and modify the source-code and to share it widely. However, you are not permitted to include any of our code in a closed-source project.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21

    AnharmoniCAOS

    Cagliari-Orsay model for anharmonic molecular spectra in 2nd order PT

    Given dynamical coefficients and/or derivatives of the ionic potential with respect to normal (harmonic) vibrational modes, compute anharmonic energies and electric dipole-permitted transitions and intensities using nearly-degenerate perturbation theory (i.e. properly accounting for Fermi and Darling-Dennison resonances).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    3 levels density matrix simulation. Currently it enables you to get time solvetions for three-level systems. It's generates files with time solvetions for density matrix. In the future It will solve multilevel atomic system on MPI.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    A C/C++ library for Cavity Quantum Electrodynamics Simulations. CQEDSimulator is a framework that provides all basic mathematical elements and methods to perform quantum numerical simulations. It's crossplatform, that works on Windows, Linux, Mac...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Dipoles-Cavity Interaction
    <Temporarily Unavailable Online> This project is aiming at completing a library of open codes (mainly based on MATLAB at present) to deal with Dipoles-Cavity Interaction problems. Common methods, including Green's function method and Master Equation method et al, will be applied to the coding. Samples of calculations and standard comparison with publications using the library will be given for demonstration of the usage. Interface to some commonly used software, such as Lumerical FDTD Solutions, will also be developed in the project. This project is titled under nanophotonics, quantum optics, nano-optics, computational physics and physics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    FermiFab
    Repository moving to https://github.com/cmendl/fermifab ! A quantum physics toolbox for small fermionic systems. Keywords: quantum mechanics, reduced density matrices, Slater determinants, second quantization, creation and annihilation operators
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next