Search Results for "python q learning" - Page 9

Showing 994 open source projects for "python q learning"

View related business solutions
  • Get Avast Free Antivirus with 24/7 AI-powered online scam detection Icon
    Get Avast Free Antivirus with 24/7 AI-powered online scam detection

    Get protection for today’s online threats. Free.

    Award-winning antivirus protection, as well as protection against online scams, dangerous Wi-Fi connections, hacked accounts, and ransomware. It includes Avast Assistant, your built-in AI partner, which gives you help with suspicious online messages, offers, and more.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Paperless-ngx

    Paperless-ngx

    A community-supported supercharged version of paperless

    Paperless-ngx is a community-supported open-source document management system that transforms your physical documents into a searchable online archive so you can keep, well, less paper.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 5
    Unicorn

    Unicorn

    The magical reactive component framework for Django

    Quickly add in simple interactions to regular Django templates without learning a new templating language. Stop fighting with a new JavaScript build tool and separate process to use yet another frontend framework. Building a feature-rich API is complicated. Skip creating a bunch of serializers and just use Django. Unicorn progressively enhances a normal Django view, so the initial render of components is fast and great for SEO. The end result is that you can focus on writing regular Django...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings). Innovation is happening at a rapid pace...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that depend...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making...
    Downloads: 5 This Week
    Last Update:
    See Project
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 10
    NuPIC

    NuPIC

    Numenta platform for intelligent computing

    The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implements the HTM learning algorithms. HTM is a detailed computational theory of the neocortex. At the core of HTM are time-based continuous learning algorithms that store and recall spatial and temporal patterns. NuPIC is suited to a variety of problems, particularly anomaly detection and prediction of streaming data sources. For more information, see numenta.org or the NuPIC Forum. If you want...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Nixtla

    Nixtla

    Fast forecasting with statistical and econometric models

    StatsForecast offers a collection of widely used univariate time series forecasting models, including automatic ARIMA, ETS, CES, and Theta modeling optimized for high performance using numba. It also includes a large battery of benchmarking models. Lightning-fast forecasting with statistical and econometric models.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. It is easy to customize or extend. Users can find...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    WikiChat

    WikiChat

    WikiChat is an improved RAG

    WikiChat is a chatbot framework designed to interactively retrieve and summarize Wikipedia information, allowing users to ask questions and get context-aware responses?
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    PySR

    PySR

    High-Performance Symbolic Regression in Python and Julia

    PySR is an open-source tool for Symbolic Regression: a machine learning task where the goal is to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. The details of these algorithms...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    CleanVision

    CleanVision

    Automatically find issues in image datasets

    CleanVision automatically detects potential issues in image datasets like images that are: blurry, under/over-exposed, (near) duplicates, etc. This data-centric AI package is a quick first step for any computer vision project to find problems in the dataset, which you want to address before applying machine learning. CleanVision is super simple -- run the same couple lines of Python code to audit any image dataset! The quality of machine learning models hinges on the quality of the data used...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    DVC

    DVC

    Data Version Control | Git for Data & Models

    DVC is built to make ML models shareable and reproducible. It is designed to handle large files, data sets, machine learning models, and metrics as well as code. Version control machine learning models, data sets and intermediate files. DVC connects them with code and uses Amazon S3, Microsoft Azure Blob Storage, Google Drive, Google Cloud Storage, Aliyun OSS, SSH/SFTP, HDFS, HTTP, network-attached storage, or disc to store file contents. Version control machine learning models, data sets...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    MLE-Agent

    MLE-Agent

    Intelligent companion for seamless AI engineering and research

    MLE-Agent is designed as a pairing LLM agent for machine learning engineers and researchers. A library designed for managing machine learning experiments, tracking metrics, and model deployment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    Triton Inference Server is an open-source inference serving software that streamlines AI inferencing. Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    RL Games

    RL Games

    RL implementations

    rl_games is a high-performance reinforcement learning framework optimized for GPU-based training, particularly in environments like robotics and continuous control tasks. It supports advanced algorithms and is built with PyTorch.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Liger Kernel

    Liger Kernel

    Efficient Triton Kernels for LLM Training

    Liger Kernel is a unified kernel developed by LinkedIn to streamline data science and machine learning workflows across different languages and tools. It provides a consistent interface for running code in various languages (such as Python, R, SQL) within a single Jupyter-like environment, enhancing productivity and collaboration for data scientists working in mixed-language projects.
    Downloads: 3 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.