Showing 163 open source projects for "tensorflow"

View related business solutions
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    ... be applied; this is where unsupervised learning comes in. Unsupervised learning can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel provides practical knowledge on how to apply unsupervised learning using two simple, production-ready Python frameworks - scikit-learn and TensorFlow. With the hands-on examples and code provided, you will identify difficult-to-find patterns in data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DeepSpeech

    DeepSpeech

    Open source embedded speech-to-text engine

    DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers. DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow to make the implementation easier. A pre-trained English model is available for use and can be downloaded following...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 3
    Text Gen

    Text Gen

    Almost state of art text generation library

    Almost state of art text generation library. Text gen is a python library that allow you build a custom text generation model with ease. Something sweet built with Tensorflow and Pytorch(coming soon). Load your data, your data must be in a text format. Download the example data from the example folder. Tune your model to know the best optimizer, activation method to use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Objectron

    Objectron

    A dataset of short, object-centric video clips

    The Objectron dataset is a collection of short, object-centric video clips, which are accompanied by AR session metadata that includes camera poses, sparse point-clouds and characterization of the planar surfaces in the surrounding environment. In each video, the camera moves around the object, capturing it from different angles. The data also contain manually annotated 3D bounding boxes for each object, which describe the object’s position, orientation, and dimensions. The dataset consists...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 5
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    See original code here: https://github.com/jakeret/tf_unet Currently this project is based on Tensorflow 1.13 code base and there are no plans to transfer to TF version 2. The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert." Additional work is being done to add custom layers...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Keras TCN

    Keras TCN

    Keras Temporal Convolutional Network

    TCNs exhibit longer memory than recurrent architectures with the same capacity. Performs better than LSTM/GRU on a vast range of tasks (Seq. MNIST, Adding Problem, Copy Memory, Word-level PTB...). Parallelism (convolutional layers), flexible receptive field size (possible to specify how far the model can see), stable gradients (backpropagation through time, vanishing gradients). The usual way is to import the TCN layer and use it inside a Keras model. The receptive field is defined as the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the theory...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 10
    Lambda Networks

    Lambda Networks

    Implementation of LambdaNetworks, a new approach to image recognition

    Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ layer, which captures interactions by transforming contexts into linear functions, termed lambdas, and applying these linear functions to each input separately. Shinel94 has added a Keras implementation! It won't be officially supported in this repository, so either copy / paste the code under ./lambda_networks/tfkeras.py or make sure to install tensorflow and keras before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorFlow Course

    TensorFlow Course

    Simple and ready-to-use tutorials for TensorFlow

    This repository houses a highly popular (~16k stars) set of TensorFlow tutorials and example code aimed at beginners and intermediate users. It includes Jupyter notebooks and scripts that cover neural network fundamentals, model training, deployment, and more, with support for Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    EfficientNet Keras

    EfficientNet Keras

    Implementation of EfficientNet model. Keras and TensorFlow Keras

    This repository contains a Keras (and TensorFlow Keras) reimplementation of EfficientNet, a lightweight convolutional neural network architecture achieving state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS, on both ImageNet and five other commonly used transfer learning datasets. Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    SageMaker MXNet Training Toolkit

    SageMaker MXNet Training Toolkit

    Toolkit for running MXNet training scripts on SageMaker

    SageMaker MXNet Training Toolkit is an open-source library for using MXNet to train models on Amazon SageMaker. For inference, see SageMaker MXNet Inference Toolkit. For the Dockerfiles used for building SageMaker MXNet Containers, see AWS Deep Learning Containers. For information on running MXNet jobs on Amazon SageMaker, please refer to the SageMaker Python SDK documentation. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    DELTA is a deep learning-based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees. AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    ... contain people as nodes and friendships between them as links, with data like a person’s age and the date a friendship was established. StellarGraph supports the analysis of many kinds of graphs. StellarGraph is built on TensorFlow 2 and its Keras high-level API, as well as Pandas and NumPy. It is thus user-friendly, modular and extensible. It interoperates smoothly with code that builds on these, such as the standard Keras layers and scikit-learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    GPT2 for Multiple Languages

    GPT2 for Multiple Languages

    GPT2 for Multiple Languages, including pretrained models

    With just 2 clicks (not including Colab auth process), the 1.5B pretrained Chinese model demo is ready to go. The contents in this repository are for academic research purpose, and we do not provide any conclusive remarks. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) Simplifed GPT2 train scripts(based on Grover, supporting TPUs). Ported bert tokenizer, multilingual corpus compatible. 1.5B GPT2 pretrained Chinese model (~15G corpus, 10w steps). Batteries...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorNets

    TensorNets

    High level network definitions with pre-trained weights in TensorFlow

    High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 >= TF >= 1.4.0). Applicability. Many people already have their own ML workflows and want to put a new model on their workflows. TensorNets can be easily plugged together because it is designed as simple functional interfaces without custom classes. Manageability. Models are written in tf.contrib.layers, which is lightweight like PyTorch and Keras, and allows for ease of accessibility to every weight and end...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    ..., competitive, and mixed settings. The code is built on top of TensorFlow and integrates with the Multiagent Particle Environments (MPE) for benchmarking. Researchers can use it to reproduce the experiments presented in the paper, which demonstrate how agents learn behaviors such as coordination, competition, and communication. Although archived, MADDPG remains a widely cited baseline in multi-agent reinforcement learning research and has inspired further algorithmic developments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Affine Transformation of Virtual Object

    Affine Transformation of Virtual Object

    Transformation virtual 3D object using a finger gesture-based system

    Affine transformation virtual 3D object using a finger gesture-based interactive system in the virtual environment. A convolutional neural network (CNN) based thumb and index fingertip detection system are presented here for seamless interaction with a virtual 3D object in the virtual environment. First, a two-stage CNN is employed to detect the hand and fingertips, and using the information of the fingertip position, the scale, rotation, translation, and in general, the affine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Graph Nets library

    Graph Nets library

    Build Graph Nets in Tensorflow

    Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. This library implements the foundational...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    BytePS is a high-performance and generally distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on either TCP or RDMA networks. BytePS outperforms existing open-sourced distributed training frameworks by a large margin. For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL. In certain scenarios, BytePS can double the training speed compared with Horovod+NCCL. We...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Baselines

    Baselines

    High-quality implementations of reinforcement learning algorithms

    Unlike the other two, openai/baselines is not currently a maintained or prominent repo in the OpenAI organization (and I found no strong reference in OpenAI’s main GitHub). Historically, “baselines” repositories are often used for baseline implementations of reinforcement learning algorithms or reference models (e.g. in the RL domain). If there was an OpenAI “baselines” repo, it might have contained reference implementations for reinforcement learning or model policy baselines to compare new...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format). There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. In addition...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.