Showing 283 open source projects for "neural python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    Automated Interpretability

    Automated Interpretability

    Code for Language models can explain neurons in language models paper

    The automated-interpretability repository implements tools and pipelines for automatically generating, simulating, and scoring explanations of neuron (or latent feature) behavior in neural networks. Instead of relying purely on manual, ad hoc interpretability probing, this repo aims to scale interpretability by using algorithmic methods that produce candidate explanations and assess their quality. It includes a “neuron explainer” component that, given a target neuron or latent feature,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space! It comes with a set of homonymous pre-trained networks available on HuggingFace portal and extends the transfromers package to support Mid-fusion Models. Late-fusion models encode each modality independently, but into one shared vector space. Due to independent encoding late-fusion models are good at capturing coarse-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Shap-E

    Shap-E

    Generate 3D objects conditioned on text or images

    The shap-e repository provides the official code and model release for Shap-E, a conditional generative model designed to produce 3D assets (implicit functions, meshes, neural radiance fields) from text or image prompts. The model is built with a two-stage architecture: first an encoder that maps existing 3D assets into parameterizations of implicit functions, and then a conditional diffusion model trained on those parameterizations to generate new assets. Because it works at the level of...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    PyTorch Implementation of SDE Solvers

    PyTorch Implementation of SDE Solvers

    Differentiable SDE solvers with GPU support and efficient sensitivity

    This library provides stochastic differential equation (SDE) solvers with GPU support and efficient backpropagation. examples/demo.ipynb gives a short guide on how to solve SDEs, including subtle points such as fixing the randomness in the solver and the choice of noise types. examples/latent_sde.py learns a latent stochastic differential equation, as in Section 5 of [1]. The example fits an SDE to data, whilst regularizing it to be like an Ornstein-Uhlenbeck prior process. The model can be...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Conscious Artificial Intelligence

    Conscious Artificial Intelligence

    It's possible for machines to become self-aware.

    This project is a quest for conscious artificial intelligence. A number of prototypes will be developed as the project progresses. This project has 2 subprojects: Object Pascal based CAI NEURAL API - https://github.com/joaopauloschuler/neural-api Python based K-CAI NEURAL API - https://github.com/joaopauloschuler/k-neural-api A video from the first prototype has been made: http://www.youtube.com/watch?v=qH-IQgYy9zg Above video shows a popperian agent collecting mining ore from 3 mining sites and bringing to the base. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Rhino

    Rhino

    On-device Speech-to-Intent engine powered by deep learning

    Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a given context of interest, in real-time. The end-to-end platform for embedding private voice AI into any software in a few lines of code. Design with no limits on top of a modular platform. Create use-case-specific voice AI models in seconds. Develop voice features with a few lines of code using intuitive and cross-platform SDKs. Deliver voice AI everywhere: on-device, mobile, web browsers,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    OpenNMT is an open-source ecosystem for neural machine translation and neural sequence learning. OpenNMT-tf is a general-purpose sequence learning toolkit using TensorFlow 2. While neural machine translation is the main target task, it has been designed to more generally support sequence-to-sequence mapping, sequence tagging, sequence classification, language modeling. Models are described with code to allow training custom architectures and overriding default behavior. For example, the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The...
    Downloads: 15 This Week
    Last Update:
    See Project
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 10
    GNNePCSAFT

    GNNePCSAFT

    Smart Thermodynamic Modeling with Graph Neural Networks

    Our project harnesses the power of Graph Neural Network (GNN) to estimate pure-component parameters of the state-of-the-art Equation of State, PC-SAFT. We aim to empower users to leverage this robust equation without the need for prior experimental data, revolutionizing the calculation of thermodynamic properties and enhancing process simulations. FeOS is used for the PC-SAFT calculations. The estimated parameters can be used in DWSIM and Aspen HYSYS process simulators.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Eugraphios

    Eugraphios

    Free, portable desktop Computer-Assisted Translation (CAT) tool.

    Eugraphios is a free, portable desktop Computer-Assisted Translation (CAT) tool designed for freelancers. Whether you're translating documents, websites, or software, Eugraphios is designed to meet your needs and exceed your expectations. With a focus on intuitive design and user-friendly interfaces, Eugraphios aims to eliminate the complexity that often hinders professionals and beginners in the translation field. By providing a seamless and enjoyable experience, this tool empowers users...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12

    NeuronetExperimenter

    NeuronetExperimenter simulates the activity of biological neurons

    The NeuronetExperimenter software can be used to quickly simulate large sets of biological neurons arranged with arbitrary network connectivity. The software makes it easy to investigate the behaviors of large, complex, neural networks, especially when starting from XPPAUT models (http://www.math.pitt.edu/~bard/xpp/xpp.html). The software is very flexible and allows users to develop multiple neuron types with different constituent differential equations describing their behavior. Any of...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    ControlNet

    ControlNet

    Let us control diffusion models

    ControlNet is a neural network architecture designed to add conditional control to text-to-image diffusion models. Rather than training from scratch, ControlNet “locks” the weights of a pre-trained diffusion model and introduces a parallel trainable branch that learns additional conditions—like edges, depth maps, segmentation, human pose, scribbles, or other guidance signals. This allows the system to control where and how the model should focus during generation, enabling users to steer...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    finetuner

    finetuner

    Task-oriented finetuning for better embeddings on neural search

    Fine-tuning is an effective way to improve performance on neural search tasks. However, setting up and performing fine-tuning can be very time-consuming and resource-intensive. Jina AI’s Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud. With Finetuner, you can easily enhance the performance of pre-trained models, making them production-ready without extensive labeling or expensive hardware. Create...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    StoryTeller

    StoryTeller

    Multimodal AI Story Teller, built with Stable Diffusion, GPT, etc.

    ...The final video will be saved as /out/out.mp4, alongside other intermediate images, audio files, and subtitles. For more advanced use cases, you can also directly interface with Story Teller in Python code.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    BWR Ai watermark remover

    BWR Ai watermark remover

    AI-powered tool to quickly remove watermarks from videos flawlessly

    Blue Wave Remover is an advanced AI-driven video watermark removal software designed to effortlessly eliminate logos, text, timestamps, and watermarks from video content. Utilizing cutting-edge computer vision and generative AI algorithms, it accurately detects and removes both static and moving watermarks while preserving the original video's quality, colors, and clarity. The program supports popular video formats and offers batch processing for fast and efficient removal on multiple files....
    Leader badge
    Downloads: 7 This Week
    Last Update:
    See Project
  • 17
    Nougat

    Nougat

    Implementation of Nougat Neural Optical Understanding

    Nougat is a multi-modal generative modeling framework that bridges vision and text modalities with structured generation control (e.g. layout, scene composition) rather than treating images as flat contexts. It combines object-centric modules with transformer-based reasoning to propose, refine, and render scenes in a generative pipeline. The architecture allows you to specify or prompt a layout (which objects should be where) and then the model fills in appearance, context, lighting, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    AI Upscaler for Blender

    AI Upscaler for Blender

    AI Upscaler for Blender using Real-ESRGAN

    Blender add-on to dramatically reduce render times using the Real-ESRGAN upscaler. Rendering an HD image in Blender takes 37 minutes. Upscaling can render a similar quality image in 5 mins total. Any PC or laptop can now do 3D rendering. 4k images can be rendered in the time it would take to render HD 1080p images. HD 1080p images can be rendered in record time on low-end hardware. Installation is easy. Just install the addon. No special hardware or GPU is required. Upscaling is done...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    DeepH-pack

    DeepH-pack

    Deep neural networks for density functional theory Hamiltonian

    DeepH-pack is the official implementation of the DeepH (Deep Hamiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Prime QA

    Prime QA

    State-of-the-art Multilingual Question Answering research

    PrimeQA is a public open source repository that enables researchers and developers to train state-of-the-art models for question answering (QA). By using PrimeQA, a researcher can replicate the experiments outlined in a paper published in the latest NLP conference while also enjoying the capability to download pre-trained models (from an online repository) and run them on their own custom data. PrimeQA is built on top of the Transformers toolkit and uses datasets and models that are directly...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    AnnLite

    AnnLite

    A fast embedded library for approximate nearest neighbor search

    AnnLite is a lightweight and embeddable library for fast and filterable approximate nearest neighbor search (ANNS). It allows to search for nearest neighbors in a dataset of millions of points with a Pythonic API. A simple API is designed to be used with Python. It is easy to use and intuitive to set up to production. The library uses a highly optimized approximate nearest neighbor search algorithm (HNSW) to search for nearest neighbors. The library allows you to search for nearest neighbors within a subset of the dataset. Smooth integration with neural search ecosystem including Jina and DocArray, so that users can easily expose search API with gRPC and/or HTTP. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 6 This Week
    Last Update:
    See Project
  • 25
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project