Showing 283 open source projects for "neural python"

View related business solutions
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • The Most Powerful Software Platform for EHSQ and ESG Management Icon
    The Most Powerful Software Platform for EHSQ and ESG Management

    Addresses the needs of small businesses and large global organizations with thousands of users in multiple locations.

    Choose from a complete set of software solutions across EHSQ that address all aspects of top performing Environmental, Health and Safety, and Quality management programs.
    Learn More
  • 1
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    ...PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Nixtla Neural Forecast

    Nixtla Neural Forecast

    Scalable and user friendly neural forecasting algorithms.

    NeuralForecast offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: MLP, LSTM, GRU, RNN, TCN, TimesNet, BiTCN, DeepAR, NBEATS, NBEATSx, NHITS, TiDE, DeepNPTS, TSMixer, TSMixerx, MLPMultivariate, DLinear, NLinear, TFT, Informer, AutoFormer, FedFormer, PatchTST, iTransformer, StemGNN, and TimeLLM. There is a shared belief in Neural forecasting methods'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices. Predicting stock...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Dominate AI Search Results Icon
    Dominate AI Search Results

    Generative Al is shaping brand discovery. AthenaHQ ensures your brand leads the conversation.

    AthenaHQ is a cutting-edge platform for Generative Engine Optimization (GEO), designed to help brands optimize their visibility and performance across AI-driven search platforms like ChatGPT, Google AI, and more.
    Learn More
  • 5
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Chemprop

    Chemprop

    Message Passing Neural Networks for Molecule Property Prediction

    Chemprop is a repository containing message-passing neural networks for molecular property prediction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    SKORCH

    SKORCH

    A scikit-learn compatible neural network library that wraps PyTorch

    A scikit-learn compatible neural network library that wraps PyTorch.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    ...The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    Penzai, developed by Google DeepMind, is a JAX-based library for representing, visualizing, and manipulating neural network models as functional pytree data structures. It is designed to make machine learning research more interpretable and interactive, particularly for tasks like model surgery, ablation studies, architecture debugging, and interpretability research. Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    Cherche

    Cherche

    Neural Search

    Cherche allows the creation of efficient neural search pipelines using retrievers and pre-trained language models as rankers. Cherche's main strength is its ability to build diverse and end-to-end pipelines from lexical matching, semantic matching, and collaborative filtering-based models. Cherche provides modules dedicated to summarization and question answering. These modules are compatible with Hugging Face's pre-trained models and fully integrated into neural search pipelines. Search is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Haiku

    Haiku

    JAX-based neural network library

    ...It preserves Sonnet’s module-based programming model for state management while retaining access to JAX’s function transformations. Haiku can be expected to compose with other libraries and work well with the rest of JAX. Similar to Sonnet modules, Haiku modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Autograd

    Autograd

    Efficiently computes derivatives of numpy code

    Autograd can automatically differentiate native Python and Numpy code. It can handle a large subset of Python's features, including loops, ifs, recursion and closures, and it can even take derivatives of derivatives of derivatives. It supports reverse-mode differentiation (a.k.a. backpropagation), which means it can efficiently take gradients of scalar-valued functions with respect to array-valued arguments, as well as forward-mode differentiation, and the two can be composed arbitrarily....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. ...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 15
    Ultimate Vocal Remover (UVR5)

    Ultimate Vocal Remover (UVR5)

    GUI for a Vocal Remover that uses Deep Neural Networks

    This application uses state-of-the-art source separation models to remove vocals from audio files. UVR's core developers trained all of the models provided in this package (except for the Demucs v3 and v4 4-stem models).
    Downloads: 420 This Week
    Last Update:
    See Project
  • 16
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Keras

    Keras

    Python-based neural networks API

    Python Deep Learning library
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DeepVariant

    DeepVariant

    DeepVariant is an analysis pipeline that uses a deep neural networks

    DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data. DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM format), produces pileup image tensors from them, classifies each tensor using a convolutional neural network, and finally reports the results in a standard VCF or gVCF file. DeepTrio is a deep learning-based trio variant caller built on top of DeepVariant. DeepTrio...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    Flax

    Flax

    Flax is a neural network library for JAX

    Flax is a flexible neural-network library for JAX that embraces functional programming while offering ergonomic module abstractions. Its design separates pure computation from state by threading parameter collections and RNGs explicitly, enabling reproducibility, transformation, and easy experimentation with JAX transforms like jit, pmap, and vmap. Modules define parameterized computations, but initialization and application remain side-effect free, which pairs naturally with JAX’s staging...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    Bittensor

    Bittensor

    Internet-scale Neural Networks

    Bittensor is a decentralized machine learning protocol that allows AI models to collaborate, learn, and earn tokens within a global network. It introduces a blockchain-based economy for neural networks, where participants are incentivized to contribute valuable knowledge and compute power. Bittensor combines peer-to-peer learning with on-chain rewards, creating a self-governing, scalable AI system that evolves without centralized control. It is a novel approach to aligning incentives in AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    GraphCast, developed by Google DeepMind, is a research-grade weather forecasting framework that employs graph neural networks (GNNs) to generate medium-range global weather predictions. The repository provides complete example code for running and training both GraphCast and GenCast, two models introduced in DeepMind’s research papers. GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 25
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next